These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 15490414)

  • 1. Genomic damage in end-stage renal failure: potential involvement of advanced glycation end products and carbonyl stress.
    Stopper H; Schupp N; Bahner U; Sebekova K; Klassen A; Heidland A
    Semin Nephrol; 2004 Sep; 24(5):474-8. PubMed ID: 15490414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic damage in chronic renal failure--potential therapeutic interventions.
    Stopper H; Schupp N; Klassen A; Sebekova K; Heidland A
    J Ren Nutr; 2005 Jan; 15(1):81-6. PubMed ID: 15648013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic damage and malignancy in end-stage renal failure: do advanced glycation end products contribute?
    Sebeková K; Wagner Z; Schupp N; Boor P
    Kidney Blood Press Res; 2007; 30(1):56-66. PubMed ID: 17261927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genotoxicity of advanced glycation end products: involvement of oxidative stress and of angiotensin II type 1 receptors.
    Schupp N; Schinzel R; Heidland A; Stopper H
    Ann N Y Acad Sci; 2005 Jun; 1043():685-95. PubMed ID: 16037294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyanidin-3-rutinoside attenuates methylglyoxal-induced protein glycation and DNA damage via carbonyl trapping ability and scavenging reactive oxygen species.
    Thilavech T; Ngamukote S; Belobrajdic D; Abeywardena M; Adisakwattana S
    BMC Complement Altern Med; 2016 May; 16():138. PubMed ID: 27215203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathogenic role of advanced glycation end-products (AGEs): an overview.
    Weiss MF
    Perit Dial Int; 1999; 19 Suppl 2():S47-52. PubMed ID: 10406493
    [No Abstract]   [Full Text] [Related]  

  • 7. [Carbonyl stress and chronic renal failure].
    Kalousová M; Zima T; Tesar V; Stípek S
    Cas Lek Cesk; 2002 Mar; 141(5):143-5. PubMed ID: 11998220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relevance of oxidative and carbonyl stress to long-term uremic complications.
    Miyata T; Kurokawa K; van Ypersele de Strihou C
    Kidney Int Suppl; 2000 Aug; 76():S120-5. PubMed ID: 10936808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New approaches for the treatment of genomic damage in end-stage renal disease.
    Schupp N; Schmid U; Heidland A; Stopper H
    J Ren Nutr; 2008 Jan; 18(1):127-33. PubMed ID: 18089459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoestrogens attenuate oxidative DNA damage in vascular smooth muscle cells from stroke-prone spontaneously hypertensive rats.
    Mizutani K; Ikeda K; Nishikata T; Yamori Y
    J Hypertens; 2000 Dec; 18(12):1833-40. PubMed ID: 11132608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing.
    Tatone C; Heizenrieder T; Di Emidio G; Treffon P; Amicarelli F; Seidel T; Eichenlaub-Ritter U
    Hum Reprod; 2011 Jul; 26(7):1843-59. PubMed ID: 21558076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients.
    Babizhayev MA; Strokov IA; Nosikov VV; Savel'yeva EL; Sitnikov VF; Yegorov YE; Lankin VZ
    Cell Biochem Biophys; 2015 Apr; 71(3):1425-43. PubMed ID: 25427889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Do all roads lead to the Rome? The glycation perspective!
    Ahmad S; Akhter F; Shahab U; Rafi Z; Khan MS; Nabi R; Khan MS; Ahmad K; Ashraf JM; Moinuddin
    Semin Cancer Biol; 2018 Apr; 49():9-19. PubMed ID: 29113952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy protects osteoblasts from advanced glycation end products-induced apoptosis through intracellular reactive oxygen species.
    Yang L; Meng H; Yang M
    J Mol Endocrinol; 2016 May; 56(4):291-300. PubMed ID: 26903511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of AGEs in diabetic nephropathy.
    Fukami K; Yamagishi S; Ueda S; Okuda S
    Curr Pharm Des; 2008; 14(10):946-52. PubMed ID: 18473844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relation between different treatment modalities and genomic damage of end-stage renal failure patients.
    Kobras K; Schupp N; Nehrlich K; Adelhardt M; Bahner U; Vienken J; Heidland A; Sebekova K; Stopper H
    Kidney Blood Press Res; 2006; 29(1):10-7. PubMed ID: 16582572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxicity of advanced glycation end products in mammalian cells.
    Stopper H; Schinzel R; Sebekova K; Heidland A
    Cancer Lett; 2003 Feb; 190(2):151-6. PubMed ID: 12565169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time in hemodialysis modulates the levels of genetic damage in hemodialysis patients.
    Rodríguez-Ribera L; Stoyanova E; Corredor Z; Coll E; Silva I; Diaz JM; Ballarin J; Marcos R; Pastor S
    Environ Mol Mutagen; 2014 May; 55(4):363-8. PubMed ID: 24436196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cancer risk and oxidative DNA damage in man.
    Loft S; Poulsen HE
    J Mol Med (Berl); 1996 Jun; 74(6):297-312. PubMed ID: 8862511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of different hemodialysis regimens on genomic damage in end-stage renal failure.
    Schupp N; Stopper H; Rutkowski P; Kobras K; Nebel M; Bahner U; Vienken J; Heidland A
    Semin Nephrol; 2006 Jan; 26(1):28-32. PubMed ID: 16412822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.