These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 15491081)

  • 1. [Renal disease in diabetics. Immunological bases of tubule-interstitial fibrosis and glomeruloesclerosis. Current therapeutic approach].
    Orozco AR; Jiménez RL; Aguilar AC; Arredondo MC; Rodríguez VM
    Rev Alerg Mex; 2004; 51(4):155-61. PubMed ID: 15491081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of growth factors, cytokines, and vasoactive compounds in obstructive nephropathy.
    Klahr S; Morrissey JJ
    Semin Nephrol; 1998 Nov; 18(6):622-32. PubMed ID: 9819153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of berberine on matrix accumulation and NF-kappa B signal pathway in alloxan-induced diabetic mice with renal injury.
    Liu W; Zhang X; Liu P; Shen X; Lan T; Li W; Jiang Q; Xie X; Huang H
    Eur J Pharmacol; 2010 Jul; 638(1-3):150-5. PubMed ID: 20447389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Progression of chronic renal disease.
    Klahr S; Morrissey J
    Am J Kidney Dis; 2003 Mar; 41(3 Suppl 1):S3-7. PubMed ID: 12612942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of angiotensin II in tubulointerstitial injury.
    Cao Z; Cooper ME
    Semin Nephrol; 2001 Nov; 21(6):554-62. PubMed ID: 11709803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and cellular distribution of TLR4, MyD88, and NF-κB in diabetic renal tubulointerstitial fibrosis, in vitro and in vivo.
    Liu P; Li F; Qiu M; He L
    Diabetes Res Clin Pract; 2014 Aug; 105(2):206-16. PubMed ID: 24894085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diabetic nephropathy, inflammation, hyaluronan and interstitial fibrosis.
    Lewis A; Steadman R; Manley P; Craig K; de la Motte C; Hascall V; Phillips AO
    Histol Histopathol; 2008 Jun; 23(6):731-9. PubMed ID: 18366011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of vasoactive compounds, growth factors and cytokines in the progression of renal disease.
    Klahr S; Morrissey JJ
    Kidney Int Suppl; 2000 Apr; 75():S7-14. PubMed ID: 10828755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advanced glycation end products and the kidney.
    Bohlender JM; Franke S; Stein G; Wolf G
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F645-59. PubMed ID: 16159899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of progression of chronic renal damage.
    Klahr S
    J Nephrol; 1999; 12 Suppl 2():S53-62. PubMed ID: 10688403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mizoribine reduces renal injury and macrophage infiltration in non-insulin-dependent diabetic rats.
    Kikuchi Y; Imakiire T; Yamada M; Saigusa T; Hyodo T; Hyodo N; Suzuki S; Miura S
    Nephrol Dial Transplant; 2005 Aug; 20(8):1573-81. PubMed ID: 15905195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Attenuation of inflammatory response by a novel chalcone protects kidney and heart from hyperglycemia-induced injuries in type 1 diabetic mice.
    Fang Q; Wang J; Wang L; Zhang Y; Yin H; Li Y; Tong C; Liang G; Zheng C
    Toxicol Appl Pharmacol; 2015 Oct; 288(2):179-91. PubMed ID: 26206226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rosiglitazone reduces angiotensin II and advanced glycation end product-dependent sustained nuclear factor-kappaB activation in cultured human proximal tubular epithelial cells.
    Morcos M; Schlotterer A; Sayed AA; Kukudov G; Oikomonou D; Ibrahim Y; Pfisterer F; Schneider J; Bozorgmehr F; Rudofsky G; Schwenger V; Kientsch-Engels R; Hamann A; Zeier M; Dugi K; Yard B; Humpert PM; van der Woude F; Nawroth PP; Bierhaus A
    Horm Metab Res; 2008 Nov; 40(11):752-9. PubMed ID: 18711692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways.
    Malik S; Suchal K; Khan SI; Bhatia J; Kishore K; Dinda AK; Arya DS
    Am J Physiol Renal Physiol; 2017 Aug; 313(2):F414-F422. PubMed ID: 28566504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diabetic nephropathy: from mechanisms to rational therapies.
    Giunti S; Barit D; Cooper ME
    Minerva Med; 2006 Jun; 97(3):241-62. PubMed ID: 16855519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terpene glycoside component from Moutan Cortex ameliorates diabetic nephropathy by regulating endoplasmic reticulum stress-related inflammatory responses.
    Chen J; Hou XF; Wang G; Zhong QX; Liu Y; Qiu HH; Yang N; Gu JF; Wang CF; Zhang L; Song J; Huang LQ; Jia XB; Zhang MH; Feng L
    J Ethnopharmacol; 2016 Dec; 193():433-444. PubMed ID: 27664441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubulointerstitial nephritis antigen: primary structure, expression and role in health and disease.
    Yoshioka K; Takemura T; Hattori S
    Nephron; 2002 Jan; 90(1):1-7. PubMed ID: 11744798
    [No Abstract]   [Full Text] [Related]  

  • 18. [Mechanisms for the development and progression of diabetic nephropathy].
    Haneda M
    Nihon Rinsho; 2006 Feb; 64 Suppl 2():427-32. PubMed ID: 16523927
    [No Abstract]   [Full Text] [Related]  

  • 19. Long-term treatment with ramipril attenuates renal osteopontin expression in diabetic rats.
    Li C; Yang CW; Park CW; Ahn HJ; Kim WY; Yoon KH; Suh SH; Lim SW; Cha JH; Kim YS; Kim J; Chang YS; Bang BK
    Kidney Int; 2003 Feb; 63(2):454-63. PubMed ID: 12631111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors.
    Sugimoto H; Grahovac G; Zeisberg M; Kalluri R
    Diabetes; 2007 Jul; 56(7):1825-33. PubMed ID: 17456853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.