These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

580 related articles for article (PubMed ID: 15491157)

  • 1. Insight into the polar reactivity of the onium chalcogen analogues of S-adenosyl-L-methionine.
    Iwig DF; Booker SJ
    Biochemistry; 2004 Oct; 43(42):13496-509. PubMed ID: 15491157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isotope and elemental effects indicate a rate-limiting methyl transfer as the initial step in the reaction catalyzed by Escherichia coli cyclopropane fatty acid synthase.
    Iwig DF; Grippe AT; McIntyre TA; Booker SJ
    Biochemistry; 2004 Oct; 43(42):13510-24. PubMed ID: 15491158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases.
    Dalhoff C; Lukinavicius G; Klimasăuskas S; Weinhold E
    Nat Chem Biol; 2006 Jan; 2(1):31-2. PubMed ID: 16408089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine.
    Hoffman JL
    Biochemistry; 1986 Jul; 25(15):4444-9. PubMed ID: 3530324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crithidia luciliae: effect of purine starvation on S-adenosyl-L-methionine uptake and protein methylation.
    Alleman MM; Mann VH; Bacchi CJ; Yarlett N; Gottlieb M; Dwyer DM
    Exp Parasitol; 1995 Dec; 81(4):519-28. PubMed ID: 8542993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation.
    Youngblood B; Shieh FK; Buller F; Bullock T; Reich NO
    Biochemistry; 2007 Jul; 46(30):8766-75. PubMed ID: 17616174
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipoyl synthase requires two equivalents of S-adenosyl-L-methionine to synthesize one equivalent of lipoic acid.
    Cicchillo RM; Iwig DF; Jones AD; Nesbitt NM; Baleanu-Gogonea C; Souder MG; Tu L; Booker SJ
    Biochemistry; 2004 Jun; 43(21):6378-86. PubMed ID: 15157071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural studies of inhibition of S-adenosylmethionine synthetase by slow, tight-binding intermediate and product analogues.
    Markham GD; Reczkowski RS
    Biochemistry; 2004 Mar; 43(12):3415-25. PubMed ID: 15035613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The conformations of a substrate and a product bound to the active site of S-adenosylmethionine synthetase.
    Schalk-Hihi C; Markham GD
    Biochemistry; 1999 Feb; 38(8):2542-50. PubMed ID: 10029549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and evaluation of analogues of S-adenosyl-L-methionine, as inhibitors of the E. coli cyclopropane fatty acid synthase.
    Guérard C; Bréard M; Courtois F; Drujon T; Ploux O
    Bioorg Med Chem Lett; 2004 Apr; 14(7):1661-4. PubMed ID: 15026045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resistance to multiple adenine nucleoside and methionine analogues in mutant murine lymphoma cells with enlarged S-adenosylmethionine pools.
    Kajander EO; Kubota M; Carrera CJ; Montgomery JA; Carson DA
    Cancer Res; 1986 Jun; 46(6):2866-70. PubMed ID: 3698011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of S-adenosyl-L-methionine analogs and their use for sequence-specific transalkylation of DNA by methyltransferases.
    Dalhoff C; Lukinavicius G; Klimasauskas S; Weinhold E
    Nat Protoc; 2006; 1(4):1879-86. PubMed ID: 17487172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-adenosyl-L-methionine is required for DNA cleavage by type III restriction enzymes.
    Bist P; Sistla S; Krishnamurthy V; Acharya A; Chandrakala B; Rao DN
    J Mol Biol; 2001 Jun; 310(1):93-109. PubMed ID: 11419939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A substrate switch: a new mode of regulation in the methionine metabolic pathway.
    Martinov MV; Vitvitsky VM; Mosharov EV; Banerjee R; Ataullakhanov FI
    J Theor Biol; 2000 Jun; 204(4):521-32. PubMed ID: 10833353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile hydrogen-deuterium exchange at the 5'-position of an analogue of S-adenosyl-l-methionine.
    Magnusson OT; Frey PA
    Bioorg Chem; 2002 Feb; 30(1):53-61. PubMed ID: 11955002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resonance-assisted intramolecular chalcogen-chalcogen interactions?
    Sanz P; Yáñez M; Mó O
    Chemistry; 2003 Sep; 9(18):4548-55. PubMed ID: 14502641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The biosynthetic incorporation of selenomethionine and telluromethionine into pyrrolidone carboxyl peptidase (PYRase) from S. aureus.
    Boles JO; Yu HN; Patti JM
    SAAS Bull Biochem Biotechnol; 1997; 10():13-7. PubMed ID: 9274057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. S-Adenosyl-L-methionine: beyond the universal methyl group donor.
    Roje S
    Phytochemistry; 2006 Aug; 67(15):1686-98. PubMed ID: 16766004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical and experimental sulfur K-edge X-ray absorption spectroscopic study of cysteine, cystine, homocysteine, penicillamine, methionine and methionine sulfoxide.
    Risberg ED; Jalilehvand F; Leung BO; Pettersson LG; Sandström M
    Dalton Trans; 2009 May; (18):3542-58. PubMed ID: 19381417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of sulfide radical cations through complexation with the peptide bond: mechanisms relevant to oxidation of proteins containing multiple methionine residues.
    Bobrowski K; Hug GL; Pogocki D; Marciniak B; Schöneich C
    J Phys Chem B; 2007 Aug; 111(32):9608-20. PubMed ID: 17658786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.