These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 15491206)

  • 1. Magnetoswitchable controlled hydrophilicity/hydrophobicity of electrode surfaces using alkyl-chain-functionalized magnetic particles: application for switchable electrochemistry.
    Katz E; Sheeney-Haj-Ichia L; Basnar B; Felner I; Willner I
    Langmuir; 2004 Oct; 20(22):9714-9. PubMed ID: 15491206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoswitchable electrochemistry gated by alkyl-chain-functionalized magnetic nanoparticles: control of diffusional and surface-confined electrochemical processes.
    Katz E; Baron R; Willner I
    J Am Chem Soc; 2005 Mar; 127(11):4060-70. PubMed ID: 15771543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magneto-switchable electrocatalytic and bioelectrocatalytic transformations.
    Katz E; Sheeney-Haj-Ichia L; Willner I
    Chemistry; 2002 Sep; 8(18):4138-48. PubMed ID: 12298004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticles.
    Willner I; Katz E
    Langmuir; 2006 Feb; 22(4):1409-19. PubMed ID: 16460055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoswitchable reactions of DNA monolayers on electrodes: gating the processes by hydrophobic magnetic nanoparticles.
    Katz E; Weizmann Y; Willner I
    J Am Chem Soc; 2005 Jun; 127(25):9191-200. PubMed ID: 15969597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Switchable surface properties through the electrochemical or biocatalytic generation of Ag0 nanoclusters on monolayer-functionalized electrodes.
    Riskin M; Basnar B; Chegel VI; Katz E; Willner I; Shi F; Zhang X
    J Am Chem Soc; 2006 Feb; 128(4):1253-60. PubMed ID: 16433543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple electrochemical method for deposition and voltammetric inspection of silver particles at the liquid-liquid interface of a thin-film electrode.
    Mirceski V; Gulaboski R
    J Phys Chem B; 2006 Feb; 110(6):2812-20. PubMed ID: 16471890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of undoped 5 nm diamond nanoparticles.
    Holt KB; Ziegler C; Caruana DJ; Zang J; Millán-Barrios EJ; Hu J; Foord JS
    Phys Chem Chem Phys; 2008 Jan; 10(2):303-10. PubMed ID: 18213416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics.
    Willner I; Baron R; Willner B
    Biosens Bioelectron; 2007 Apr; 22(9-10):1841-52. PubMed ID: 17071070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of organic ligands, electrostatic and magnetic interactions in formation of colloidal and interfacial inorganic nanostructures.
    Khomutov GB; Koksharov YA
    Adv Colloid Interface Sci; 2006 Sep; 122(1-3):119-47. PubMed ID: 16887093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of Ig.G adsorption and the effect on electrochemical responses at titanium dioxide electrode.
    Moulton SE; Barisci JN; Bath A; Stella R; Wallace GG
    Langmuir; 2005 Jan; 21(1):316-22. PubMed ID: 15620320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transduction of photostimulated binding interactions at photoisomerizable monolayer electrodes: novel approaches for optobioelectronic systems and reversible immunosensor devices.
    Willner I; Willner B
    Biotechnol Prog; 1999 Nov; 15(6):991-1002. PubMed ID: 10585182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-responsive magnetite/PEO-PPO-PEO block copolymer nanoparticles for controlled drug targeting delivery.
    Chen S; Li Y; Guo C; Wang J; Ma J; Liang X; Yang LR; Liu HZ
    Langmuir; 2007 Dec; 23(25):12669-76. PubMed ID: 17988160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrode surface confinement of self-assembled enzyme aggregates using magnetic nanoparticles and its application in bioelectrocatalysis.
    Mavré F; Bontemps M; Ammar-Merah S; Marchal D; Limoges B
    Anal Chem; 2007 Jan; 79(1):187-94. PubMed ID: 17194138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Switching of directions of bioelectrocatalytic currents and photocurrents at electrode surfaces by using hydrophobic magnetic nanoparticles.
    Katz E; Willner I
    Angew Chem Int Ed Engl; 2005 Jul; 44(30):4791-4. PubMed ID: 15995995
    [No Abstract]   [Full Text] [Related]  

  • 17. Atomic force microscopy measurement of heterogeneity in bacterial surface hydrophobicity.
    Dorobantu LS; Bhattacharjee S; Foght JM; Gray MR
    Langmuir; 2008 May; 24(9):4944-51. PubMed ID: 18355095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomolecule-nanoparticle hybrid systems for bioelectronic applications.
    Willner I; Willner B; Katz E
    Bioelectrochemistry; 2007 Jan; 70(1):2-11. PubMed ID: 16750941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated oligoaniline-cross-linked composites of Au nanoparticles/glucose oxidase electrodes: a generic paradigm for electrically contacted enzyme systems.
    Yehezkeli O; Yan YM; Baravik I; Tel-Vered R; Willner I
    Chemistry; 2009 Mar; 15(11):2674-9. PubMed ID: 19180594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lutetium bis(tetra-tert-butylphthalocyaninato): a superior redox probe to study the transfer of anions and cations across the water/nitrobenzene interface by means of square-wave voltammetry at the three-phase electrode.
    Quentel F; Mirceski V; L'Her M
    J Phys Chem B; 2005 Jan; 109(3):1262-7. PubMed ID: 16851090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.