These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15491403)

  • 1. The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements.
    Giardina B; Mosca D; De Rosa MC
    Acta Physiol Scand; 2004 Nov; 182(3):229-44. PubMed ID: 15491403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance.
    Weber RE; Campbell KL
    Acta Physiol (Oxf); 2011 Jul; 202(3):549-62. PubMed ID: 20958923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New insights into the proton-dependent oxygen affinity of Root effect haemoglobins.
    Bonaventura C; Crumbliss AL; Weber RE
    Acta Physiol Scand; 2004 Nov; 182(3):245-58. PubMed ID: 15491404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell pH, the Bohr effect, and other oxygenation-linked phenomena in blood O2 and CO2 transport.
    Jensen FB
    Acta Physiol Scand; 2004 Nov; 182(3):215-27. PubMed ID: 15491402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptation to extreme environments: structure-function relationships in Emperor penguin haemoglobin.
    Tamburrini M; Condò SG; di Prisco G; Giardina B
    J Mol Biol; 1994 Apr; 237(5):615-21. PubMed ID: 8158641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical, biochemical and functional characterization of haemoglobin from three strains of Artemia.
    Sugumar V; Munuswamy N
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Feb; 146(2):291-8. PubMed ID: 17185017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of substitutions of lysine and aspartic acid for asparagine at beta 108 and of tryptophan for valine at alpha 96 on the structural and functional properties of human normal adult hemoglobin: roles of alpha 1 beta 1 and alpha 1 beta 2 subunit interfaces in the cooperative oxygenation process.
    Tsai CH; Shen TJ; Ho NT; Ho C
    Biochemistry; 1999 Jul; 38(27):8751-61. PubMed ID: 10393550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of vertebrate haemoglobins: Histidine side chains, specific buffer value and Bohr effect.
    Berenbrink M
    Respir Physiol Neurobiol; 2006 Nov; 154(1-2):165-84. PubMed ID: 16481225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and functional analysis of the two haemoglobins of the antarctic seabird Catharacta maccormicki characterization of an additional phosphate binding site by molecular modelling.
    Tamburrini M; Riccio A; Romano M; Giardina B; di Prisco G
    Eur J Biochem; 2000 Oct; 267(19):6089-98. PubMed ID: 10998071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root Effect Haemoglobins in Fish May Greatly Enhance General Oxygen Delivery Relative to Other Vertebrates.
    Rummer JL; Brauner CJ
    PLoS One; 2015; 10(10):e0139477. PubMed ID: 26436414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular adaptation to hibernation: the hemoglobin of Dryomys nitedula.
    Clementi ME; Petruzzelli R; Filippucci MG; Capo C; Misiti F; Giardina B
    Pflugers Arch; 2003 Apr; 446(1):46-51. PubMed ID: 12690462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From the Arctic to fetal life: physiological importance and structural basis of an 'additional' chloride-binding site in haemoglobin.
    De Rosa MC; Castagnola M; Bertonati C; Galtieri A; Giardina B
    Biochem J; 2004 Jun; 380(Pt 3):889-96. PubMed ID: 14979874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hemoglobins of the cold-adapted Antarctic teleost Cygnodraco mawsoni.
    Caruso C; Rutigliano B; Romano M; di Prisco G
    Biochim Biophys Acta; 1991 Jun; 1078(2):273-82. PubMed ID: 2065095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen-binding characteristics of three extracellular haemoglobins of Artemia salina.
    D'Hondt J; Moens L; Heip J; D'Hondt A; Kondo M
    Biochem J; 1978 Jun; 171(3):705-10. PubMed ID: 27169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural-functional characterization of the cathodic haemoglobin of the conger eel Conger conger: molecular modelling study of an additional phosphate-binding site.
    Pellegrini M; Giardina B; Verde C; Carratore V; Olianas A; Sollai L; Sanna MT; Castagnola M; di Prisco G
    Biochem J; 2003 Jun; 372(Pt 3):679-86. PubMed ID: 12646043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxygen binding and its allosteric control in hemoglobin of the primitive branchiopod crustacean Triops cancriformis.
    Pirow R; Hellmann N; Weber RE
    FEBS J; 2007 Jul; 274(13):3374-91. PubMed ID: 17550418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature regulation in vertebrates.
    Crawshaw LI
    Annu Rev Physiol; 1980; 42():473-91. PubMed ID: 6996593
    [No Abstract]   [Full Text] [Related]  

  • 18. Low-temperature sensitivity and enhanced Bohr effect in red deer (Cervus elaphus) haemoglobin: a molecular adaptive strategy to life at high altitude and low temperature.
    Pellegrini M; Giardina B; Castagnola M; Olianas A; Sanna MT; Fais A; Messana I; Corda M
    Eur J Biochem; 1999 Mar; 260(3):667-71. PubMed ID: 10102994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arctic adaptation in whale hemoglobin: interplay of carbon dioxide and temperature in the oxygen unloading.
    Giardina B; Ekker M; Condó SG; Scatena R; Clementi ME; Brix O
    Arctic Med Res; 1990 Apr; 49(2):93-7. PubMed ID: 2112390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the hemoglobins of the Australian lungfish Neoceratodus forsteri (Krefft).
    Rasmussen JR; Wells RM; Henty K; Clark TD; Brittain T
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):162-7. PubMed ID: 18835585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.