BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 15491653)

  • 1. Photodegradation of CL-20: insights into the mechanisms of initial reactions and environmental fate.
    Hawari J; Deschamps S; Beaulieu C; Paquet L; Halasz A
    Water Res; 2004 Nov; 38(19):4055-64. PubMed ID: 15491653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decomposition of the polycyclic nitramine explosive, CL-20, by Fe(0).
    Balakrishnan VK; Monteil-Rivera F; Halasz A; Corbeanu A; Hawari J
    Environ Sci Technol; 2004 Dec; 38(24):6861-6. PubMed ID: 15669350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of CL-20 in sandy soils: degradation products as potential markers of natural attenuation.
    Monteil-Rivera F; Halasz A; Manno D; Kuperman RG; Thiboutot S; Ampleman G; Hawari J
    Environ Pollut; 2009 Jan; 157(1):77-85. PubMed ID: 18801604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alkaline hydrolysis of the cyclic nitramine explosives RDX, HMX, and CL-20: new insights into degradation pathways obtained by the observation of novel intermediates.
    Balakrishnan VK; Halasz A; Hawari J
    Environ Sci Technol; 2003 May; 37(9):1838-43. PubMed ID: 12775055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of CL-20 by white-rot fungi.
    Fournier D; Monteil-Rivera F; Halasz A; Bhatt M; Hawari J
    Chemosphere; 2006 Mar; 63(1):175-81. PubMed ID: 16112713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of the cyclic nitramine explosives RDX, HMX, and CL-20.
    Crocker FH; Indest KJ; Fredrickson HL
    Appl Microbiol Biotechnol; 2006 Nov; 73(2):274-90. PubMed ID: 17058075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2.
    Bhushan B; Halasz A; Hawari J
    Appl Microbiol Biotechnol; 2005 Dec; 69(4):448-55. PubMed ID: 15841370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.
    Isayev O; Gorb L; Qasim M; Leszczynski J
    J Phys Chem B; 2008 Sep; 112(35):11005-13. PubMed ID: 18686996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2.
    Bhushan B; Halasz A; Thiboutot S; Ampleman G; Hawari J
    Biochem Biophys Res Commun; 2004 Apr; 316(3):816-21. PubMed ID: 15033473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX.
    Monteil-Rivera F; Paquet L; Deschamps S; Balakrishnan VK; Beaulieu C; Hawari J
    J Chromatogr A; 2004 Jan; 1025(1):125-32. PubMed ID: 14753679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp.
    Hawari J; Halasz A; Groom C; Deschamps S; Paquet L; Beaulieu C; Corriveau A
    Environ Sci Technol; 2002 Dec; 36(23):5117-23. PubMed ID: 12523428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption and oxic degradation of the explosive CL-20 during transport in subsurface sediments.
    Szecsody JE; Girvin DC; Devary BJ; Campbell JA
    Chemosphere; 2004 Aug; 56(6):593-610. PubMed ID: 15212902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotic and abiotic degradation of CL-20 and RDX in soils.
    Crocker FH; Thompson KT; Szecsody JE; Fredrickson HL
    J Environ Qual; 2005; 34(6):2208-16. PubMed ID: 16275722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preliminary ecotoxicological characterization of a new energetic substance, CL-20.
    Gong P; Sunahara GI; Rocheleau S; Dodard SG; Robidoux PY; Hawari J
    Chemosphere; 2004 Aug; 56(7):653-8. PubMed ID: 15234161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of CL-20 chemical degradation pathways, theoretical and experimental evidence for dependence on competing modes of reaction.
    Qasim M; Fredrickson H; Honea P; Furey J; Leszczynski J; Okovytyy S; Szecsody J; Kholod Y
    SAR QSAR Environ Res; 2005 Oct; 16(5):495-515. PubMed ID: 16272046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of ultra high-performance liquid chromatography for studying hydrolysis kinetics of CL-20 and related energetic compounds.
    Makarov A; Lobrutto R; Christodoulatos C; Jerkovich A
    J Hazard Mater; 2009 Mar; 162(2-3):1034-40. PubMed ID: 18644671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitroreductase catalyzed biotransformation of CL-20.
    Bhushan B; Halasz A; Hawari J
    Biochem Biophys Res Commun; 2004 Sep; 322(1):271-6. PubMed ID: 15313201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical Insight on Decreased Sensitivity of CL-20/TNT Cocrystal Revealed by ReaxFF MD Simulations.
    Ren C; Li X; Guo L
    J Chem Inf Model; 2019 May; 59(5):2079-2092. PubMed ID: 30768269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation of hexanitrohexaazaisowurtzitane (CL-20) by cytosolic enzymes of Japanese quail and the rabbit.
    Bardai GK; Halasz A; Sunahara GI; Dodard S; Spear PA; Grosse S; Hoang J; Hawari J
    Environ Toxicol Chem; 2006 Dec; 25(12):3221-9. PubMed ID: 17220092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal decomposition of energetic materials. 5. reaction processes of 1,3,5-trinitrohexahydro-s-triazine below its melting point.
    Maharrey S; Behrens R
    J Phys Chem A; 2005 Dec; 109(49):11236-49. PubMed ID: 16331907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.