BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 15491660)

  • 1. Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate.
    Tom Kuo MC; Liang KF; Han YL; Fan KC
    Water Res; 2004 Nov; 38(19):4125-34. PubMed ID: 15491660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene.
    Han YL; Kuo MC; Tseng IC; Lu CJ
    J Hazard Mater; 2007 Sep; 148(3):583-91. PubMed ID: 17412499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced degradation of chlorinated ethylenes in groundwater from a paint contaminated site by two-stage fluidized-bed reactor.
    Ohlen K; Chang YK; Hegemann W; Yin CR; Lee ST
    Chemosphere; 2005 Jan; 58(3):373-7. PubMed ID: 15581940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests.
    Azizian MF; Istok JD; Semprini L
    J Contam Hydrol; 2007 Feb; 90(1-2):105-24. PubMed ID: 17101190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of specific gene analysis to assess the effectiveness of surfactant-enhanced trichloroethylene cometabolism.
    Liang SH; Liu JK; Lee KH; Kuo YC; Kao CM
    J Hazard Mater; 2011 Dec; 198():323-30. PubMed ID: 22071259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activated carbon adsorption of trichloroethylene (TCE) vapor stripped from TCE-contaminated water.
    Miyake Y; Sakoda A; Yamanashi H; Kaneda H; Suzuki M
    Water Res; 2003 Apr; 37(8):1852-8. PubMed ID: 12697228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ORC-GAC-Fe0 system for the remediation of trichloroethylene and monochlorobenzene contaminated aquifer: 1. Adsorption and degradation.
    Lin Q; Chen YX; Plagentz V; Schäfer D; Dahmke A
    J Environ Sci (China); 2004; 16(1):108-12. PubMed ID: 14971463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural attenuation potential of tricholoroethene in wetland plant roots: role of native ammonium-oxidizing microorganisms.
    Qin K; Struckhoff GC; Agrawal A; Shelley ML; Dong H
    Chemosphere; 2015 Jan; 119():971-977. PubMed ID: 25303656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses.
    Frascari D; Pinelli D; Nocentini M; Zannoni A; Fedi S; Baleani E; Zannoni D; Farneti A; Battistelli A
    J Hazard Mater; 2006 Nov; 138(1):29-39. PubMed ID: 16879912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ sequenced bioremediation of mixed contaminants in groundwater.
    Devlin JF; Katic D; Barker JF
    J Contam Hydrol; 2004 Apr; 69(3-4):233-61. PubMed ID: 15028393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site.
    Lee MH; Clingenpeel SC; Leiser OP; Wymore RA; Sorenson KS; Watwood ME
    Environ Pollut; 2008 May; 153(1):238-46. PubMed ID: 17904715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of toluene concentration and hydrogen peroxide on Pseudomonas plecoglossicida cometabolizing mixture of cis-DCE and TCE in soil slurry.
    Li J; Lu Q; de Toledo RA; Lu Y; Shim H
    Environ Geochem Health; 2015 Dec; 37(6):985-95. PubMed ID: 25963576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic cometabolism of trichloroethene and cis-dichloroethene with benzene and chlorinated benzenes as growth substrates.
    Elango V; Kurtz HD; Freedman DL
    Chemosphere; 2011 Jun; 84(2):247-53. PubMed ID: 21531438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field evaluation of in situ source reduction of trichloroethylene in groundwater using bioenhanced in-well vapor stripping.
    Goltz MN; Gandhi RK; Gorelick SM; Hopkins GD; Smith LH; Timmins BH; McCarty PL
    Environ Sci Technol; 2005 Nov; 39(22):8963-70. PubMed ID: 16323801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.