These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 15491660)

  • 21. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Laboratory column studies for evaluating a barrier system for providing oxygen and substrate for TCE biodegradation.
    Kao CM; Chen SC; Su MC
    Chemosphere; 2001 Aug; 44(5):925-34. PubMed ID: 11513425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The need for bioaugmentation after thermal treatment of a TCE-contaminated aquifer: Laboratory experiments.
    Friis AK; Albrechtsen HJ; Cox E; Bjerg PL
    J Contam Hydrol; 2006 Dec; 88(3-4):235-48. PubMed ID: 17081651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes in soil microbial community composition induced by cometabolism of toluene and trichloroethylene.
    Hubert C; Shen Y; Voordouw G
    Biodegradation; 2005 Feb; 16(1):11-22. PubMed ID: 15727151
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic degradation of trichloroethylene using enzyme extracts isolated from a bacterial consortium.
    El-Zahab B; Meza L; Cutright T; Wang P
    Appl Biochem Biotechnol; 2004 Jun; 117(3):165-74. PubMed ID: 15304768
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ bioremediation of chlorinated solvents.
    Semprini L
    Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):101-5. PubMed ID: 8565895
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an attached-growth process for the on-site bioremediation of an aquifer polluted by chlorinated solvents.
    Frascari D; Bucchi G; Doria F; Rosato A; Tavanaie N; Salviulo R; Ciavarelli R; Pinelli D; Fraraccio S; Zanaroli G; Fava F
    Biodegradation; 2014 Jun; 25(3):337-50. PubMed ID: 24096531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures.
    Lee CY; Liu WD
    J Hazard Mater; 2006 Sep; 137(1):541-9. PubMed ID: 16621274
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of cross-substrate interaction on biotrickling filtration for the control of VOC emissions.
    Den W; Huang C; Li CH
    Chemosphere; 2004 Nov; 57(7):697-709. PubMed ID: 15488933
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerobic biodegradation of dichloroethenes by indigenous bacteria isolated from contaminated sites in Africa.
    Olaniran AO; Pillay D; Pillay B
    Chemosphere; 2008 Aug; 73(1):24-9. PubMed ID: 18635246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of trichloroethylene (TCE) and toluene concentrations on TCE and toluene biodegradation and the population density of TCE and toluene degraders in soil.
    Mu DY; Scow KM
    Appl Environ Microbiol; 1994 Jul; 60(7):2661-5. PubMed ID: 8074538
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Trichloroethylene aerobic cometabolism by suspended and immobilized butane-growing microbial consortia: a kinetic study.
    Frascari D; Zanaroli G; Bucchi G; Rosato A; Tavanaie N; Fraraccio S; Pinelli D; Fava F
    Bioresour Technol; 2013 Sep; 144():529-38. PubMed ID: 23896437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of gene probes to assess the impact and effectiveness of aerobic in situ bioremediation of TCE.
    Hazen TC; Chakraborty R; Fleming JM; Gregory IR; Bowman JP; Jimenez L; Zhang D; Pfiffner SM; Brockman FJ; Sayler GS
    Arch Microbiol; 2009 Mar; 191(3):221-32. PubMed ID: 19034430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene.
    Kim Y; Istok JD; Semprini L
    Chemosphere; 2008 Apr; 71(9):1654-64. PubMed ID: 18313097
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of carbon starvation on toluene degradation activity by toluene monooxygenase-expressing bacteria.
    Johnson DR; Park J; Kukor JJ; Abriola LM
    Biodegradation; 2006 Oct; 17(5):437-45. PubMed ID: 16477358
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microcosm evaluation of bioaugmentation after field-scale thermal treatment of a TCE-contaminated aquifer.
    Friis AK; Kofoed JL; Heron G; Albrechtsen HJ; Bjerg PL
    Biodegradation; 2007 Dec; 18(6):661-74. PubMed ID: 17225076
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of surfactant enhanced permanganate oxidation and bidegradation of trichloroethylene in groundwater.
    Tsai TT; Kao CM; Yeh TY; Liang SH; Chien HY
    J Hazard Mater; 2009 Jan; 161(1):111-9. PubMed ID: 18436375
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Feasibility of bioremediation of trichloroethylene contaminated sites by nitrifying bacteria through cometabolism with ammonia.
    Yang L; Chang Y; Chou M
    J Hazard Mater; 1999 Oct; 69(1):111-26. PubMed ID: 10502610
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Potential waste minimization of trichloroethylene and perchloroethylene via aerobic biodegradation.
    Wang J; Cutright TJ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(8):1569-84. PubMed ID: 15991724
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.