BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 15491666)

  • 1. Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage.
    Gibert O; de Pablo J; Luis Cortina J; Ayora C
    Water Res; 2004 Nov; 38(19):4186-96. PubMed ID: 15491666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and reactivity assessment of organic substrates for sulphate-reducing bacteria in acid mine drainage treatment.
    Zagury GJ; Kulnieks VI; Neculita CM
    Chemosphere; 2006 Aug; 64(6):944-54. PubMed ID: 16487566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological treatment of highly contaminated acid mine drainage in batch reactors: Long-term treatment and reactive mixture characterization.
    Neculita CM; Zagury GJ
    J Hazard Mater; 2008 Sep; 157(2-3):358-66. PubMed ID: 18281152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial community activities during establishment, performance, and decline of bench-scale passive treatment systems for mine drainage.
    Logan MV; Reardon KF; Figueroa LA; McLain JE; Ahmann DM
    Water Res; 2005 Nov; 39(18):4537-51. PubMed ID: 16213004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical characterisation of organic electron donors for sulfate reduction for potential use in acid mine drainage treatment.
    Coetser SE; Pulles W; Heath RG; Cloete TE
    Biodegradation; 2006 Mar; 17(2):169-79. PubMed ID: 16447029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative effectiveness of mixed organic substrates to mushroom compost for treatment of mine drainage in passive bioreactors.
    Neculita CM; Yim GJ; Lee G; Ji SW; Jung JW; Park HS; Song H
    Chemosphere; 2011 Mar; 83(1):76-82. PubMed ID: 21262523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of inoculum on the performance of sulfate-reducing columns treating heavy metal contaminated water.
    Pruden A; Messner N; Pereyra L; Hanson RE; Hiibel SR; Reardon KF
    Water Res; 2007 Feb; 41(4):904-14. PubMed ID: 17222885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of Eucalyptus tereticornis (Smith) bark and Desulfotomaculum nigrificans for the remediation of acid mine drainage.
    Chockalingam E; Subramanian S
    Bioresour Technol; 2009 Jan; 100(2):615-21. PubMed ID: 18760595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption studies of Zn(II) and Cu(II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage.
    Gibert O; de Pablo J; Cortina JL; Ayora C
    Water Res; 2005 Aug; 39(13):2827-38. PubMed ID: 15992854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wine wastes as carbon source for biological treatment of acid mine drainage.
    Costa MC; Santos ES; Barros RJ; Pires C; Martins M
    Chemosphere; 2009 May; 75(6):831-6. PubMed ID: 19201010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of alpha and beta endosulfan in soil as influenced by application of different organic materials.
    Al-Hassan RM; Bashour II; Kawar NS
    J Environ Sci Health B; 2004; 39(5-6):757-64. PubMed ID: 15620084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal.
    Song H; Yim GJ; Ji SW; Neculita CM; Hwang T
    J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of bacterial diversity in acidic pond water and compost after treatment of artificial acid mine drainage for metal removal.
    Morales TA; Dopson M; Athar R; Herbert RB
    Biotechnol Bioeng; 2005 Jun; 90(5):543-51. PubMed ID: 15818559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of organic substrates as potential reactive materials for use in a denitrification permeable reactive barrier (PRB).
    Gibert O; Pomierny S; Rowe I; Kalin RM
    Bioresour Technol; 2008 Nov; 99(16):7587-96. PubMed ID: 18353637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-composting of distillery wastes with animal manures: carbon and nitrogen transformations in the evaluation of compost stability.
    Bustamante MA; Paredes C; Marhuenda-Egea FC; Pérez-Espinosa A; Bernal MP; Moral R
    Chemosphere; 2008 Jun; 72(4):551-7. PubMed ID: 18466954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The chemistry of conventional and alternative treatment systems for the neutralization of acid mine drainage.
    Kalin M; Fyson A; Wheeler WN
    Sci Total Environ; 2006 Aug; 366(2-3):395-408. PubMed ID: 16375949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of cellulose waste versus organic waste as substrate in a sulfate reducing bioreactor.
    Choudhary RP; Sheoran AS
    Bioresour Technol; 2011 Mar; 102(6):4319-24. PubMed ID: 20926292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor.
    Chávez P C; Castillo L R; Dendooven L; Escamilla-Silva EM
    Bioresour Technol; 2005 Oct; 96(15):1730-6. PubMed ID: 15936942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: mushroom production, lignocellulolytic enzymes activity and substrate utilization.
    Isikhuemhen OS; Mikiashvili NA; Kelkar V
    Biodegradation; 2009 Jun; 20(3):351-61. PubMed ID: 18982415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.