BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 15491783)

  • 1. The TREK K2P channels and their role in general anaesthesia and neuroprotection.
    Franks NP; Honoré E
    Trends Pharmacol Sci; 2004 Nov; 25(11):601-8. PubMed ID: 15491783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neuronal background K2P channels: focus on TREK1.
    Honoré E
    Nat Rev Neurosci; 2007 Apr; 8(4):251-61. PubMed ID: 17375039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TREK-1, a K+ channel involved in neuroprotection and general anesthesia.
    Heurteaux C; Guy N; Laigle C; Blondeau N; Duprat F; Mazzuca M; Lang-Lazdunski L; Widmann C; Zanzouri M; Romey G; Lazdunski M
    EMBO J; 2004 Jul; 23(13):2684-95. PubMed ID: 15175651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic potential of neuronal two-pore domain potassium-channel modulators.
    Mathie A; Veale EL
    Curr Opin Investig Drugs; 2007 Jul; 8(7):555-62. PubMed ID: 17659475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target.
    Goonetilleke L; Quayle J
    Cardiovasc Ther; 2012 Feb; 30(1):e23-9. PubMed ID: 20946320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patents related to therapeutic activation of K(ATP) and K(2P) potassium channels for neuroprotection: ischemic/hypoxic/anoxic injury and general anesthetics.
    Judge SI; Smith PJ
    Expert Opin Ther Pat; 2009 Apr; 19(4):433-60. PubMed ID: 19441925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of hypoxia on the modulation of human TREK-1 potassium channels.
    Caley AJ; Gruss M; Franks NP
    J Physiol; 2005 Jan; 562(Pt 1):205-12. PubMed ID: 15486012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antipsychotics inhibit TREK but not TRAAK channels.
    Thümmler S; Duprat F; Lazdunski M
    Biochem Biophys Res Commun; 2007 Mar; 354(1):284-9. PubMed ID: 17222806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mixing and matching TREK/TRAAK subunits generate heterodimeric K2P channels with unique properties.
    Blin S; Ben Soussia I; Kim EJ; Brau F; Kang D; Lesage F; Bichet D
    Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4200-5. PubMed ID: 27035965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K(+) channels into open leak channels.
    Sandoz G; Thümmler S; Duprat F; Feliciangeli S; Vinh J; Escoubas P; Guy N; Lazdunski M; Lesage F
    EMBO J; 2006 Dec; 25(24):5864-72. PubMed ID: 17110924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of single two-pore domain TREK-2 channels expressed in mammalian cells.
    Kang D; Choe C; Cavanaugh E; Kim D
    J Physiol; 2007 Aug; 583(Pt 1):57-69. PubMed ID: 17540699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced inhibition of cortical glutamate and GABA release by halothane in mice lacking the K+ channel, TREK-1.
    Westphalen RI; Krivitski M; Amarosa A; Guy N; Hemmings HC
    Br J Pharmacol; 2007 Nov; 152(6):939-45. PubMed ID: 17828284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid-sensitive two-pore domain K+ channels.
    Kim D
    Trends Pharmacol Sci; 2003 Dec; 24(12):648-54. PubMed ID: 14654306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice.
    Aller MI; Wisden W
    Neuroscience; 2008 Feb; 151(4):1154-72. PubMed ID: 18222039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular biology of background K channels: insights from K(2P) knockout mice.
    Sabbadini M; Yost CS
    J Mol Biol; 2009 Feb; 385(5):1331-44. PubMed ID: 19084539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perspectives on the Two-Pore Domain Potassium Channel TREK-1 (TWIK-Related K(+) Channel 1). A Novel Therapeutic Target?
    Vivier D; Bennis K; Lesage F; Ducki S
    J Med Chem; 2016 Jun; 59(11):5149-57. PubMed ID: 26588045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TWIK-related two-pore domain potassium channel TREK-1 in carotid endothelium of normotensive and hypertensive mice.
    Pokojski S; Busch C; Grgic I; Kacik M; Salman W; Preisig-Müller R; Heyken WT; Daut J; Hoyer J; Köhler R
    Cardiovasc Res; 2008 Jul; 79(1):80-8. PubMed ID: 18339646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phospholipid sensor controls mechanogating of the K+ channel TREK-1.
    Chemin J; Patel AJ; Duprat F; Lauritzen I; Lazdunski M; Honoré E
    EMBO J; 2005 Jan; 24(1):44-53. PubMed ID: 15577940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response of the human detrusor to stretch is regulated by TREK-1, a two-pore-domain (K2P) mechano-gated potassium channel.
    Lei Q; Pan XQ; Chang S; Malkowicz SB; Guzzo TJ; Malykhina AP
    J Physiol; 2014 Jul; 592(14):3013-30. PubMed ID: 24801307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment.
    Huang D; Yu B
    Med Hypotheses; 2008; 70(3):618-24. PubMed ID: 17689202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.