BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 15491864)

  • 1. Manipulation of malic enzyme in Saccharomyces cerevisiae for increasing NADPH production capacity aerobically in different cellular compartments.
    Moreira dos Santos M; Raghevendran V; Kötter P; Olsson L; Nielsen J
    Metab Eng; 2004 Oct; 6(4):352-63. PubMed ID: 15491864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of MAE1, the Saccharomyces cerevisiae structural gene encoding mitochondrial malic enzyme.
    Boles E; de Jong-Gubbels P; Pronk JT
    J Bacteriol; 1998 Jun; 180(11):2875-82. PubMed ID: 9603875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anaplerotic role for cytosolic malic enzyme in engineered Saccharomyces cerevisiae strains.
    Zelle RM; Harrison JC; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2011 Feb; 77(3):732-8. PubMed ID: 21131518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic physiology of redox-engineered Saccharomyces cerevisiae strains modified in the ammonium assimilation for increased NADPH availability.
    Moreira dos Santos M; Thygesen G; Kötter P; Olsson L; Nielsen J
    FEMS Yeast Res; 2003 Oct; 4(1):59-68. PubMed ID: 14554197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation of a transhydrogenase-like shunt to counter redox imbalance during xylose fermentation in Saccharomyces cerevisiae.
    Suga H; Matsuda F; Hasunuma T; Ishii J; Kondo A
    Appl Microbiol Biotechnol; 2013 Feb; 97(4):1669-78. PubMed ID: 22851014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation.
    Celton M; Sanchez I; Goelzer A; Fromion V; Camarasa C; Dequin S
    BMC Genomics; 2012 Jul; 13():317. PubMed ID: 22805527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxisomal beta-oxidation of polyunsaturated fatty acids in Saccharomyces cerevisiae: isocitrate dehydrogenase provides NADPH for reduction of double bonds at even positions.
    van Roermund CW; Hettema EH; Kal AJ; van den Berg M; Tabak HF; Wanders RJ
    EMBO J; 1998 Feb; 17(3):677-87. PubMed ID: 9450993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic impact of increased NADH availability in Saccharomyces cerevisiae.
    Hou J; Scalcinati G; Oldiges M; Vemuri GN
    Appl Environ Microbiol; 2010 Feb; 76(3):851-9. PubMed ID: 20023106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae.
    Miyagi H; Kawai S; Murata K
    J Biol Chem; 2009 Mar; 284(12):7553-60. PubMed ID: 19158096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox engineering by ectopic expression of glutamate dehydrogenase genes links NADPH availability and NADH oxidation with cold growth in Saccharomyces cerevisiae.
    Ballester-Tomás L; Randez-Gil F; Pérez-Torrado R; Prieto JA
    Microb Cell Fact; 2015 Jul; 14():100. PubMed ID: 26156706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP
    Yadav S; Mody TA; Sharma A; Bachhawat AK
    G3 (Bethesda); 2020 Jan; 10(1):371-378. PubMed ID: 31757928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Saccharomyces cerevisiae YMR315W gene encodes an NADP(H)-specific oxidoreductase regulated by the transcription factor Stb5p in response to NADPH limitation.
    Hector RE; Bowman MJ; Skory CD; Cotta MA
    N Biotechnol; 2009 Oct; 26(3-4):171-80. PubMed ID: 19712762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis.
    Nissen TL; Hamann CW; Kielland-Brandt MC; Nielsen J; Villadsen J
    Yeast; 2000 Mar; 16(5):463-74. PubMed ID: 10705374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of in vivo enzyme activities in the cometabolism of glucose and acetate by Saccharomyces cerevisiae by using 13C-labeled substrates.
    dos Santos MM; Gombert AK; Christensen B; Olsson L; Nielsen J
    Eukaryot Cell; 2003 Jun; 2(3):599-608. PubMed ID: 12796305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability.
    Toivari MH; Aristidou A; Ruohonen L; Penttilä M
    Metab Eng; 2001 Jul; 3(3):236-49. PubMed ID: 11461146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activities of mitochondrial enzymes during aerobic synchronous growth of aerobically and anaerobically grown Saccharomyces cerevisiae.
    Nejedlý K; Greksák M
    Folia Microbiol (Praha); 1977; 22(1):19-29. PubMed ID: 190089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.