BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 154924)

  • 21. Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.
    Vasilyeva EA; Minkov IB; Fitin AF; Vinogradov AD
    Biochem J; 1982 Jan; 202(1):15-23. PubMed ID: 6211171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of interaction of adenosine diphosphate and adenosine triphosphate with adenosine triphosphatase of bovine heart submitochondrial particles.
    Vasilyeva EA; Fitin AF; Minkov IB; Vinogradov AD
    Biochem J; 1980 Jun; 188(3):807-15. PubMed ID: 6451217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Essential arginyl residues in mitochondrial adenosine triphosphatase.
    Marcus F; Schuster SM; Lardy HA
    J Biol Chem; 1976 Mar; 251(6):1775-80. PubMed ID: 176162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetic studies of beef heart mitochondrial adenosine triphosphatase: interaction of the inhibitor protein and adenosine triphosphate analogues.
    Krull KW; Schuster SM
    Biochemistry; 1981 Mar; 20(6):1592-8. PubMed ID: 6452898
    [No Abstract]   [Full Text] [Related]  

  • 26. Catalytic cooperativity of beef heart mitochondrial F1-ATPase revealed by using 2',3'-O-(2,4,6-trinitrophenyl)-ATP as a substrate; an indication of mutually activating catalytic sites.
    Muneyuki E; Hisabori T; Allison WS; Jault JM; Sasayama T; Yoshida M
    Biochim Biophys Acta; 1994 Nov; 1188(1-2):108-16. PubMed ID: 7947899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pre-steady-state kinetics of beef heart mitochondrial ATPase.
    Clark DD; Daggett SG; Schuster SM
    Arch Biochem Biophys; 1984 Sep; 233(2):378-92. PubMed ID: 6237608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffusion limited component of mitochondrial F1-ATPase.
    Baracca A; Solaini G; Dinelli G; Parenti Castelli G; Lenaz G
    Int J Biochem; 1993 May; 25(5):701-6. PubMed ID: 8349011
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Occurrence and significance of oxygen exchange reactions catalyzed by mitochondrial adenosine triphosphatase preparations.
    Choate GL; Hutton RL; Boyer PD
    J Biol Chem; 1979 Jan; 254(2):286-90. PubMed ID: 153910
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the adenine nucleotide content of beef-heart mitochondrial F1 ATPase during ATP synthesis in dimethyl sulfoxide.
    Beharry S; Bragg PD
    Biochem Biophys Res Commun; 1992 Jan; 182(2):697-702. PubMed ID: 1531174
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural preferences for the binding of chromium nucleotides by beef heart mitochondrial ATPase.
    Bossard MJ; Schuster SM
    J Biol Chem; 1981 Jul; 256(13):6617-22. PubMed ID: 6453868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Localisation of adenine nucleotide-binding sites on beef-heart mitochondrial ATPase by photolabelling with 8-azido-ADP and 8-azido-ATP.
    Wagenvoord RJ; van der Kraan I; Kemp A
    Biochim Biophys Acta; 1979 Oct; 548(1):85-95. PubMed ID: 158387
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Azide as a probe of co-operative interactions in the mitochondrial F1-ATPase.
    Harris DA
    Biochim Biophys Acta; 1989 May; 974(2):156-62. PubMed ID: 2523739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid hydrolysis of ATP by mitochondrial F1-ATPase correlates with the filling of the second of three catalytic sites.
    Milgrom YM; Cross RL
    Proc Natl Acad Sci U S A; 2005 Sep; 102(39):13831-6. PubMed ID: 16172372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of organic solvents and orthophosphate on the ATPase activity of F1 ATPase.
    de Meis L
    FEBS Lett; 1987 Mar; 213(2):333-6. PubMed ID: 2881809
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ATPase of bovine heart mitochondria. Modulation of ITPase activity by ATP, ADP, acetyl ATP and acetyl AMP.
    Thomassen J; Klungsøyr L
    Biochim Biophys Acta; 1983 Apr; 723(1):114-22. PubMed ID: 6131689
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interactions of beef heart mitochondrial adenosine triphosphatase and aurovertin.
    Aleksandrowicz Z; Schuster SM
    Life Sci; 1979 Apr; 24(15):1407-17. PubMed ID: 158113
    [No Abstract]   [Full Text] [Related]  

  • 40. ATP binding and hydrolysis steps of the uni-site catalysis by the mitochondrial F(1)-ATPase are affected by inorganic phosphate.
    Milgrom YM
    Biochim Biophys Acta; 2010 Oct; 1797(10):1768-74. PubMed ID: 20646992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.