These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 1549333)

  • 1. [Biomechanical studies of the spine. Their significance for the development of rational treatment techniques].
    Magerl F; Angst M; Schläpfer F
    Orthopade; 1992 Feb; 21(1):24-8. PubMed ID: 1549333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical testing of spinal instrumentation.
    Ashman RB; Birch JG; Bone LB; Corin JD; Herring JA; Johnston CE; Ritterbush JF; Roach JW
    Clin Orthop Relat Res; 1988 Feb; 227():113-25. PubMed ID: 3338201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests?
    Kettler A; Liakos L; Haegele B; Wilke HJ
    Eur Spine J; 2007 Dec; 16(12):2186-92. PubMed ID: 17721711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct real-time measurement of in vivo forces in the lumbar spine.
    Ledet EH; Tymeson MP; DiRisio DJ; Cohen B; Uhl RL
    Spine J; 2005; 5(1):85-94. PubMed ID: 15653089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The load on the spinal column in handling of burdens].
    Jäger M; Luttmann A; Laurig W
    Orthopade; 1990 Jun; 19(3):132-9. PubMed ID: 2374690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ISSLS prize winner: A novel approach to determine trunk muscle forces during flexion and extension: a comparison of data from an in vitro experiment and in vivo measurements.
    Wilke HJ; Rohlmann A; Neller S; Graichen F; Claes L; Bergmann G
    Spine (Phila Pa 1976); 2003 Dec; 28(23):2585-93. PubMed ID: 14652475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro spinal arthrodesis implant mechanical testing protocols.
    Ashman RB; Bechtold JE; Edwards WT; Johnston CE; McAfee PC; Tencer AF
    J Spinal Disord; 1989 Dec; 2(4):274-81. PubMed ID: 2520086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study.
    Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S
    Spine J; 2006; 6(6):648-58. PubMed ID: 17088195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vitro biomechanical investigation: variable positioning of leopard carbon fiber interbody cages.
    Quigley KJ; Alander DH; Bledsoe JG
    J Spinal Disord Tech; 2008 Aug; 21(6):442-7. PubMed ID: 18679101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of spine forces under whole-body vibration by means of a biomechanical model and transfer functions.
    Fritz M
    Aviat Space Environ Med; 1997 Jun; 68(6):512-9. PubMed ID: 9184739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [A new concept of biomechanics in spinal surgery and its influences on the development of artificial implantation].
    Zhou DW; Chen GY; Wu ZK
    Zhonghua Wai Ke Za Zhi; 1990 Oct; 28(10):595-8. PubMed ID: 2086049
    [No Abstract]   [Full Text] [Related]  

  • 13. Prediction of osteoporotic spinal deformity.
    Keller TS; Harrison DE; Colloca CJ; Harrison DD; Janik TJ
    Spine (Phila Pa 1976); 2003 Mar; 28(5):455-62. PubMed ID: 12616157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basic science of spinal instrumentation.
    Goel VK; Gilbertson LG
    Clin Orthop Relat Res; 1997 Feb; (335):10-31. PubMed ID: 9020203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [A biomechanical study of the mechanical stress transmission of dental implants using finite element analysis. Review of literature. Part I].
    Szucs A; Divinyi T; Lorincz A
    Fogorv Sz; 2006 Aug; 99(4):141-7. PubMed ID: 17016921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis.
    Lafage V; Gangnet N; Sénégas J; Lavaste F; Skalli W
    Spine (Phila Pa 1976); 2007 Jul; 32(16):1706-13. PubMed ID: 17632390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of fusion-bone stiffness on the mechanical behavior of the lumbar spine after vertebral body replacement.
    Rohlmann A; Zander T; Bergmann G
    Clin Biomech (Bristol, Avon); 2006 Mar; 21(3):221-7. PubMed ID: 16356613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feasibility study of a mini, bone-attached, robotic system for spinal operations: analysis and experiments.
    Wolf A; Shoham M; Michael S; Moshe R
    Spine (Phila Pa 1976); 2004 Jan; 29(2):220-8. PubMed ID: 14722419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macroscopic and histologic analyses of de novo bone in the posterior spine at time of spinal implant removal.
    Birch N; D'Souza WL
    J Spinal Disord Tech; 2009 Aug; 22(6):434-8. PubMed ID: 19652571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.