These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 15493508)

  • 1. Cardiac optical mapping under a translucent stimulation electrode.
    Liau J; Dumas J; Janks D; Roth BJ; Knisley SB
    Ann Biomed Eng; 2004 Sep; 32(9):1202-10. PubMed ID: 15493508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transmembrane voltage changes during unipolar stimulation of rabbit ventricle.
    Knisley SB
    Circ Res; 1995 Dec; 77(6):1229-39. PubMed ID: 7586236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of translucent indium tin oxide to measure stimulatory effects of a passive conductor during field stimulation of rabbit hearts.
    Knisley SB; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1137-46. PubMed ID: 15894581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Line stimulation parallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts.
    Knisley SB; Baynham TC
    Circ Res; 1997 Aug; 81(2):229-41. PubMed ID: 9242184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distribution of cardiac transmembrane potentials around an extracellular electrode: dependence on fiber orientation.
    Neunlist M; Tung L
    Biophys J; 1995 Jun; 68(6):2310-22. PubMed ID: 7647235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical recordings of ventricular excitability of frog heart by an extracellular stimulating point electrode.
    Neunlist M; Tung L
    Pacing Clin Electrophysiol; 1994 Oct; 17(10):1641-54. PubMed ID: 7800567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of premature anodal stimulations on cardiac transmembrane potential and intracellular calcium distributions computed by anisotropic Bidomain models.
    Colli Franzone P; Pavarino LF; Scacchi S
    Europace; 2014 May; 16(5):736-42. PubMed ID: 24798963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of field-induced transmembrane potential responses of single cardiac cells.
    Sharma V; Lu SN; Tung L
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1031-7. PubMed ID: 12214875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examination of stimulation mechanism and strength-interval curve in cardiac tissue.
    Sidorov VY; Woods MC; Baudenbacher P; Baudenbacher F
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2602-15. PubMed ID: 16100241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous electrical and optical mapping in rabbit hearts.
    Knisley SB; Neuman MR
    Ann Biomed Eng; 2003 Jan; 31(1):32-41. PubMed ID: 12572654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual electrode effects in transvenous defibrillation-modulation by structure and interface: evidence from bidomain simulations and optical mapping.
    Entcheva E; Eason J; Efimov IR; Cheng Y; Malkin R; Claydon F
    J Cardiovasc Electrophysiol; 1998 Sep; 9(9):949-61. PubMed ID: 9786075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulatory current at the edge of an inactive conductor in an electric field: role of nonlinear interfacial current-voltage relationship.
    Sims JA; Pollard AE; White PS; Knisley SB
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):442-9. PubMed ID: 19605317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode.
    Efimov IR; Cheng YN; Biermann M; Van Wagoner DR; Mazgalev TN; Tchou PJ
    J Cardiovasc Electrophysiol; 1997 Sep; 8(9):1031-45. PubMed ID: 9300301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of shock-end virtual electrode polarisation as a direct result of 3D fluorescent photon scattering.
    Bishop MJ; Rodriguez B; Trayanova N; Gavaghan DJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1556-9. PubMed ID: 17946049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cathodal stimulation in the recovery phase of a propagating planar wave in the rabbit heart reveals four stimulation mechanisms.
    Sidorov VY; Woods MC; Baudenbacher F
    J Physiol; 2007 Aug; 583(Pt 1):237-50. PubMed ID: 17569727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of electroporation on the transmembrane potential distribution in a two-dimensional bidomain model of cardiac tissue.
    Aguel F; Debruin KA; Krassowska W; Trayanova NA
    J Cardiovasc Electrophysiol; 1999 May; 10(5):701-14. PubMed ID: 10355926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Averaging over depth during optical mapping of unipolar stimulation.
    Janks DL; Roth BJ
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1051-4. PubMed ID: 12214878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring surface potential components necessary for transmembrane current computation using microfabricated arrays.
    Wiley JJ; Ideker RE; Smith WM; Pollard AE
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2468-77. PubMed ID: 16085679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous optical mapping of transmembrane potential and intracellular calcium in myocyte cultures.
    Fast VG; Ideker RE
    J Cardiovasc Electrophysiol; 2000 May; 11(5):547-56. PubMed ID: 10826934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virtual electrode effects in myocardial fibers.
    Knisley SB; Hill BC; Ideker RE
    Biophys J; 1994 Mar; 66(3 Pt 1):719-28. PubMed ID: 8011903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.