BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 15493985)

  • 21. Using Nanodiscs to create water-soluble transmembrane chemoreceptors inserted in lipid bilayers.
    Boldog T; Li M; Hazelbauer GL
    Methods Enzymol; 2007; 423():317-35. PubMed ID: 17609138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Behavior of synthetic polymers immobilized on a cell membrane.
    Teramura Y; Kaneda Y; Totani T; Iwata H
    Biomaterials; 2008 Apr; 29(10):1345-55. PubMed ID: 18191192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cutting edge: Membrane nanotubes connect immune cells.
    Onfelt B; Nedvetzki S; Yanagi K; Davis DM
    J Immunol; 2004 Aug; 173(3):1511-3. PubMed ID: 15265877
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intercellular exchange of proteins: the immune cell habit of sharing.
    Rechavi O; Goldstein I; Kloog Y
    FEBS Lett; 2009 Jun; 583(11):1792-9. PubMed ID: 19289124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer.
    Hwang H
    J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial nanotubes: a conduit for intercellular molecular trade.
    Baidya AK; Bhattacharya S; Dubey GP; Mamou G; Ben-Yehuda S
    Curr Opin Microbiol; 2018 Apr; 42():1-6. PubMed ID: 28961452
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A bond for a lifetime: employing membrane nanotubes from living cells to determine receptor-ligand kinetics.
    Krieg M; Helenius J; Heisenberg CP; Muller DJ
    Angew Chem Int Ed Engl; 2008; 47(50):9775-7. PubMed ID: 19035533
    [No Abstract]   [Full Text] [Related]  

  • 28. Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation?
    Lim YS; Tang BL
    Cell Commun Adhes; 2012 Aug; 19(3-4):39-44. PubMed ID: 22947034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemistry. Unveiling the membrane domains.
    Groves JT
    Science; 2006 Sep; 313(5795):1901-2. PubMed ID: 17008517
    [No Abstract]   [Full Text] [Related]  

  • 30. Continuous membrane-cytoskeleton adhesion requires continuous accommodation to lipid and cytoskeleton dynamics.
    Sheetz MP; Sable JE; Döbereiner HG
    Annu Rev Biophys Biomol Struct; 2006; 35():417-34. PubMed ID: 16689643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?
    Koyanagi M; Brandes RP; Haendeler J; Zeiher AM; Dimmeler S
    Circ Res; 2005 May; 96(10):1039-41. PubMed ID: 15879310
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live cell superresolution-structured illumination microscopy imaging analysis of the intercellular transport of microvesicles and costimulatory proteins via nanotubes between immune cells.
    Halász H; Ghadaksaz AR; Madarász T; Huber K; Harami G; Tóth EA; Osteikoetxea-Molnár A; Kovács M; Balogi Z; Nyitrai M; Matkó J; Szabó-Meleg E
    Methods Appl Fluoresc; 2018 Aug; 6(4):045005. PubMed ID: 30039805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Possible role of flexible red blood cell membrane nanodomains in the growth and stability of membrane nanotubes.
    Iglic A; Lokar M; Babnik B; Slivnik T; Veranic P; Hägerstrand H; Kralj-Iglic V
    Blood Cells Mol Dis; 2007; 39(1):14-23. PubMed ID: 17475520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bridging the Gap: Virus Long-Distance Spread via Tunneling Nanotubes.
    Jansens RJJ; Tishchenko A; Favoreel HW
    J Virol; 2020 Mar; 94(8):. PubMed ID: 32024778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanotubes make big science.
    Demontis F
    PLoS Biol; 2004 Jul; 2(7):E215. PubMed ID: 15252458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophoretic transport of latex particles in lipid nanotubes.
    Tokarz M; Hakonen B; Dommersnes P; Orwar O; Akerman B
    Langmuir; 2007 Jul; 23(14):7652-8. PubMed ID: 17547424
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell evolution and the problem of membrane topology.
    Griffiths G
    Nat Rev Mol Cell Biol; 2007 Dec; 8(12):1018-24. PubMed ID: 17971839
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.
    Wattraint O; Warschawski DE; Sarazin C
    Langmuir; 2005 Apr; 21(8):3226-8. PubMed ID: 15807556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of recombinant rotavirus VP6 nanotubes as a multifunctional template for the synthesis of nanobiomaterials functionalized with metals.
    Plascencia-Villa G; Saniger JM; Ascencio JA; Palomares LA; Ramírez OT
    Biotechnol Bioeng; 2009 Dec; 104(5):871-81. PubMed ID: 19655393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. B lymphocytes and macrophages release cell membrane deposited C3-fragments on exosomes with T cell response-enhancing capacity.
    Papp K; Végh P; Prechl J; Kerekes K; Kovács J; Csikós G; Bajtay Z; Erdei A
    Mol Immunol; 2008 Apr; 45(8):2343-51. PubMed ID: 18192019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.