These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 15494148)

  • 1. Immobilized DNA-binding assay, an approach for in vitro DNA-binding assay.
    Kim JH
    Anal Biochem; 2004 Nov; 334(2):401-2. PubMed ID: 15494148
    [No Abstract]   [Full Text] [Related]  

  • 2. Hap1p photofootprinting as an in vivo assay of repression mechanism in Saccharomyces cerevisiae.
    Shimizu M; Mitchell AP
    Methods Enzymol; 2003; 370():479-87. PubMed ID: 14712669
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of functional transcription factor binding sites using closely related Saccharomyces species.
    Doniger SW; Huh J; Fay JC
    Genome Res; 2005 May; 15(5):701-9. PubMed ID: 15837806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A systems approach to measuring the binding energy landscapes of transcription factors.
    Maerkl SJ; Quake SR
    Science; 2007 Jan; 315(5809):233-7. PubMed ID: 17218526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The UGA3-GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae.
    Ishida C; Aranda C; Valenzuela L; Riego L; Deluna A; Recillas-Targa F; Filetici P; López-Revilla R; González A
    Mol Microbiol; 2006 Mar; 59(6):1790-806. PubMed ID: 16553884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional regulation of the one-carbon metabolism regulon in Saccharomyces cerevisiae by Bas1p.
    Subramanian M; Qiao WB; Khanam N; Wilkins O; Der SD; Lalich JD; Bognar AL
    Mol Microbiol; 2005 Jul; 57(1):53-69. PubMed ID: 15948949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro selection of DNA binding sites for ABF1 protein from Saccharomyces cerevisiae.
    Beinoraviciūte-Kellner R; Lipps G; Krauss G
    FEBS Lett; 2005 Aug; 579(20):4535-40. PubMed ID: 16083878
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of promoter regions containing binding sites of the heterodimeric transcription factor Ino2/Ino4 involved in yeast phospholipid biosynthesis.
    Hoppen J; Repenning A; Albrecht A; Geburtig S; Schüller HJ
    Yeast; 2005 Jun; 22(8):601-13. PubMed ID: 16034810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targets of the Gal4 transcription activator in functional transcription complexes.
    Reeves WM; Hahn S
    Mol Cell Biol; 2005 Oct; 25(20):9092-102. PubMed ID: 16199885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of transcriptional repression by Mig1 in Saccharomyces cerevisiae using a reporter assay.
    Kuchin S; Carlson M
    Methods Enzymol; 2003; 371():602-14. PubMed ID: 14712732
    [No Abstract]   [Full Text] [Related]  

  • 11. Detection and isolation of DNA-binding proteins using single-pulse ultraviolet laser crosslinking.
    Ho DT; Sauvé DM; Roberge M
    Anal Biochem; 1994 May; 218(2):248-54. PubMed ID: 8074276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Redox-sensors of microorganisms].
    Lushchak VI
    Ukr Biokhim Zh (1999); 2008; 80(4):25-34. PubMed ID: 19140447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular biology. Site-seeing by sequencing.
    Fields S
    Science; 2007 Jun; 316(5830):1441-2. PubMed ID: 17556576
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae.
    Lallet S; Garreau H; Garmendia-Torres C; Szestakowska D; Boy-Marcotte E; Quevillon-Chéruel S; Jacquet M
    Mol Microbiol; 2006 Oct; 62(2):438-52. PubMed ID: 17020582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a Leu3-DNA complex: recognition of everted CGG half-sites by a Zn2Cys6 binuclear cluster protein.
    Fitzgerald MX; Rojas JR; Kim JM; Kohlhaw GB; Marmorstein R
    Structure; 2006 Apr; 14(4):725-35. PubMed ID: 16615914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex.
    Florio C; Moscariello M; Ederle S; Fasano R; Lanzuolo C; Pulitzer JF
    Gene; 2007 Jun; 395(1-2):72-85. PubMed ID: 17400406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible photocontrol of DNA binding by a designed GCN4-bZIP protein.
    Woolley GA; Jaikaran AS; Berezovski M; Calarco JP; Krylov SN; Smart OS; Kumita JR
    Biochemistry; 2006 May; 45(19):6075-84. PubMed ID: 16681380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gln3p and Nil1p regulation of invertase activity and SUC2 expression in Saccharomyces cerevisiae.
    Oliveira EM; Mansure JJ; Bon EP
    FEMS Yeast Res; 2005 Apr; 5(6-7):605-9. PubMed ID: 15780659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Hap1-DNA site recognition through the interplay of multiple distinct intermolecular interactions.
    Wang LL; Denman I; Junker M
    Biochemistry; 2004 Nov; 43(43):13816-26. PubMed ID: 15504044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation.
    Daniels DL; Weis WI
    Nat Struct Mol Biol; 2005 Apr; 12(4):364-71. PubMed ID: 15768032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.