These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 15494237)

  • 1. Detection of Mycobacterium tuberculosis (TB) in vitro and in situ using an electronic nose in combination with a neural network system.
    Pavlou AK; Magan N; Jones JM; Brown J; Klatser P; Turner AP
    Biosens Bioelectron; 2004 Oct; 20(3):538-44. PubMed ID: 15494237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum.
    Fend R; Kolk AH; Bessant C; Buijtels P; Klatser PR; Woodman AC
    J Clin Microbiol; 2006 Jun; 44(6):2039-45. PubMed ID: 16757595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of binary mixtures of microorganisms using electrochemical impedance spectroscopy and artificial neural networks.
    Muñoz-Berbel X; Vigués N; Mas J; Del Valle M; Muñoz FJ; Cortina-Puig M
    Biosens Bioelectron; 2008 Dec; 24(4):964-8. PubMed ID: 18783936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of an electronic nose system for diagnoses of urinary tract infections.
    Pavlou AK; Magan N; McNulty C; Jones J; Sharp D; Brown J; Turner AP
    Biosens Bioelectron; 2002 Oct; 17(10):893-9. PubMed ID: 12243908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine Mycobacterium tuberculosis avoiding false positives.
    Qin D; He X; Wang K; Tan W
    Biosens Bioelectron; 2008 Dec; 24(4):626-31. PubMed ID: 18672354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recognition of anaerobic bacterial isolates in vitro using electronic nose technology.
    Pavlou A; Turner AP; Magan N
    Lett Appl Microbiol; 2002; 35(5):366-9. PubMed ID: 12390482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of gas-sensor arrays to diagnose urinary tract infections.
    Kodogiannis V; Wadge E
    Int J Neural Syst; 2005 Oct; 15(5):363-76. PubMed ID: 16278941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sniffing out the truth: clinical diagnosis using the electronic nose.
    Pavlou AK; Turner AP
    Clin Chem Lab Med; 2000 Feb; 38(2):99-112. PubMed ID: 10834396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differentiation of Agaricus species and other homobasidiomycetes based on volatile production patterns using an electronic nose system.
    Keshri G; Challen M; Elliott T; Magan N
    Mycol Res; 2003 May; 107(Pt 5):609-13. PubMed ID: 12884958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-vitro diagnosis of single and poly microbial species targeted for diabetic foot infection using e-nose technology.
    Yusuf N; Zakaria A; Omar MI; Shakaff AY; Masnan MJ; Kamarudin LM; Abdul Rahim N; Zakaria NZ; Abdullah AA; Othman A; Yasin MS
    BMC Bioinformatics; 2015 May; 16(1):158. PubMed ID: 25971258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic noses and disease diagnostics.
    Turner AP; Magan N
    Nat Rev Microbiol; 2004 Feb; 2(2):161-6. PubMed ID: 15040263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro.
    Pavlou AK; Magan N; Sharp D; Brown J; Barr H; Turner AP
    Biosens Bioelectron; 2000 Oct; 15(7-8):333-42. PubMed ID: 11219746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of microbial concentration in ice-cream using the impedance technique.
    Grossi M; Lanzoni M; Pompei A; Lazzarini R; Matteuzzi D; Riccò B
    Biosens Bioelectron; 2008 Jun; 23(11):1616-23. PubMed ID: 18353628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Qualitative analysis of biological tuberculosis samples by an electronic nose-based artificial neural network.
    Mohamed EI; Mohamed MA; Moustafa MH; Abdel-Mageed SM; Moro AM; Baess AI; El-Kholy SM
    Int J Tuberc Lung Dis; 2017 Jul; 21(7):810-817. PubMed ID: 28633707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of ofloxacin against Mycobacterium tuberculosis and Mycobacterium avium, and rifampin against M. tuberculosis in cultured human macrophages.
    Crowle AJ; Elkins N; May MH
    Am Rev Respir Dis; 1988 May; 137(5):1141-6. PubMed ID: 3143278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes.
    Díaz-González M; González-García MB; Costa-García A
    Biosens Bioelectron; 2005 Apr; 20(10):2035-43. PubMed ID: 15741073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid differentiation of Mycobacterium tuberculosis and Mycobacterium leprae from sputum by polymerase chain reaction.
    Sapkota BR; Ranjit C; Macdonald M
    Nepal Med Coll J; 2007 Mar; 9(1):12-6. PubMed ID: 17593671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mycobacterial tests].
    Takashima T; Higuchi T
    Kekkaku; 2008 Jan; 83(1):43-59. PubMed ID: 18283915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Standardization of laboratory tests for tuberculosis and their proficiency testing].
    Abe C
    Kekkaku; 2003 Aug; 78(8):541-51. PubMed ID: 14509226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial fuel cell biosensor for in situ assessment of microbial activity.
    Tront JM; Fortner JD; Plötze M; Hughes JB; Puzrin AM
    Biosens Bioelectron; 2008 Dec; 24(4):586-90. PubMed ID: 18621521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.