These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
484 related articles for article (PubMed ID: 15494240)
1. Short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment process. Part I. A novel design of BOD biosensor for easy renewal of bio-receptor. Liu J; Olsson G; Mattiasson B Biosens Bioelectron; 2004 Oct; 20(3):562-70. PubMed ID: 15494240 [TBL] [Abstract][Full Text] [Related]
2. Short-term BOD (BODst) as a parameter for on-line monitoring of biological treatment process; Part II: instrumentation of integrated flow injection analysis (FIA) system for BODst estimation. Liu J; Olsson G; Mattiasson B Biosens Bioelectron; 2004 Oct; 20(3):571-8. PubMed ID: 15494241 [TBL] [Abstract][Full Text] [Related]
3. An innovative reactor-type biosensor for BOD rapid measurement. Wang J; Zhang Y; Wang Y; Xu R; Sun Z; Jie Z Biosens Bioelectron; 2010 Mar; 25(7):1705-9. PubMed ID: 20056404 [TBL] [Abstract][Full Text] [Related]
4. Immobilized multi-species based biosensor for rapid biochemical oxygen demand measurement. Liu C; Ma C; Yu D; Jia J; Liu L; Zhang B; Dong S Biosens Bioelectron; 2011 Jan; 26(5):2074-9. PubMed ID: 20889329 [TBL] [Abstract][Full Text] [Related]
5. Benzene analysis in workplace air using an FIA-based bacterial biosensor. Lanyon YH; Marrazza G; Tothill IE; Mascini M Biosens Bioelectron; 2005 Apr; 20(10):2089-96. PubMed ID: 15741079 [TBL] [Abstract][Full Text] [Related]
6. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Okochi M; Mima K; Miyata M; Shinozaki Y; Haraguchi S; Fujisawa M; Kaneko M; Masukata T; Matsunaga T Biotechnol Bioeng; 2004 Sep; 87(7):905-11. PubMed ID: 15334417 [TBL] [Abstract][Full Text] [Related]
7. Non-steady response of BOD biosensor for the determination of biochemical oxygen demand in wastewater. Velling S; Mashirin A; Hellat K; Tenno T J Environ Monit; 2011 Jan; 13(1):95-100. PubMed ID: 21042614 [TBL] [Abstract][Full Text] [Related]
8. On-line load monitoring of wastewaters with a respirographic microbial sensor. Vaiopoulou E; Melidis P; Kampragou E; Aivasidis A Biosens Bioelectron; 2005 Aug; 21(2):365-71. PubMed ID: 16023964 [TBL] [Abstract][Full Text] [Related]
9. Development of mediated BOD biosensor system of flow injection mode for shochu distillery wastewater. Oota S; Hatae Y; Amada K; Koya H; Kawakami M Biosens Bioelectron; 2010 Sep; 26(1):262-6. PubMed ID: 20638832 [TBL] [Abstract][Full Text] [Related]
10. Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Lin L; Xiao LL; Huang S; Zhao L; Cui JS; Wang XH; Chen X Biosens Bioelectron; 2006 Mar; 21(9):1703-9. PubMed ID: 16203128 [TBL] [Abstract][Full Text] [Related]
11. A rapid and simple respirometric biosensor with immobilized cells of Nitrosomonas europaea for detecting inhibitors of ammonia oxidation. Cui R; Chung WJ; Jahng D Biosens Bioelectron; 2005 Mar; 20(9):1788-95. PubMed ID: 15681195 [TBL] [Abstract][Full Text] [Related]
12. A single-chamber microbial fuel cell as a biosensor for wastewaters. Di Lorenzo M; Curtis TP; Head IM; Scott K Water Res; 2009 Jul; 43(13):3145-54. PubMed ID: 19482326 [TBL] [Abstract][Full Text] [Related]
13. On-line monitoring of a two-stage anaerobic digestion process using a BOD analyzer. Liu J; Olsson G; Mattiasson B J Biotechnol; 2004 Apr; 109(3):263-75. PubMed ID: 15066764 [TBL] [Abstract][Full Text] [Related]
14. Improving the dynamic response of a mediator-less microbial fuel cell as a biochemical oxygen demand (BOD) sensor. Moon H; Chang IS; Kang KH; Jang JK; Kim BH Biotechnol Lett; 2004 Nov; 26(22):1717-21. PubMed ID: 15604825 [TBL] [Abstract][Full Text] [Related]
15. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Jang JD; Barford JP; Lindawati ; Renneberg R Biosens Bioelectron; 2004 Mar; 19(8):805-12. PubMed ID: 15128099 [TBL] [Abstract][Full Text] [Related]
16. Leptospirillum ferrooxidans based Fe2+ sensor. Stoytcheva M; Zlatev R; Magnin JP; Ovalle M; Valdez B Biosens Bioelectron; 2009 Oct; 25(2):482-7. PubMed ID: 19729293 [TBL] [Abstract][Full Text] [Related]
17. On-line detection of atmospheric formaldehyde by a conductometric biosensor. Vianello F; Boscolo-Chio R; Signorini S; Rigo A Biosens Bioelectron; 2007 Jan; 22(6):920-5. PubMed ID: 16678399 [TBL] [Abstract][Full Text] [Related]
18. Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition. Karasinski J; White L; Zhang Y; Wang E; Andreescu S; Sadik OA; Lavine BK; Vora M Biosens Bioelectron; 2007 May; 22(11):2643-9. PubMed ID: 17169547 [TBL] [Abstract][Full Text] [Related]
19. Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Tønning E; Sapelnikova S; Christensen J; Carlsson C; Winther-Nielsen M; Dock E; Solna R; Skladal P; Nørgaard L; Ruzgas T; Emnéus J Biosens Bioelectron; 2005 Oct; 21(4):608-17. PubMed ID: 16202874 [TBL] [Abstract][Full Text] [Related]
20. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Yagur-Kroll S; Schreuder E; Ingham CJ; Heideman R; Rosen R; Belkin S Biosens Bioelectron; 2015 Feb; 64():625-32. PubMed ID: 25441411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]