These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 15494307)

  • 41. The nucleosome remodeling complex, Snf/Swi, is required for the maintenance of transcription in vivo and is partially redundant with the histone acetyltransferase, Gcn5.
    Sudarsanam P; Cao Y; Wu L; Laurent BC; Winston F
    EMBO J; 1999 Jun; 18(11):3101-6. PubMed ID: 10357821
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes.
    Sharma VM; Tomar RS; Dempsey AE; Reese JC
    Mol Cell Biol; 2007 Apr; 27(8):3199-210. PubMed ID: 17296735
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genomewide studies of histone deacetylase function in yeast.
    Bernstein BE; Tong JK; Schreiber SL
    Proc Natl Acad Sci U S A; 2000 Dec; 97(25):13708-13. PubMed ID: 11095743
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The Sas3p and Gcn5p histone acetyltransferases are recruited to similar genes.
    Rosaleny LE; Ruiz-García AB; García-Martínez J; Pérez-Ortín JE; Tordera V
    Genome Biol; 2007; 8(6):R119. PubMed ID: 17584493
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program.
    Pijnappel WW; Schaft D; Roguev A; Shevchenko A; Tekotte H; Wilm M; Rigaut G; Séraphin B; Aasland R; Stewart AF
    Genes Dev; 2001 Nov; 15(22):2991-3004. PubMed ID: 11711434
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo.
    Govind CK; Yoon S; Qiu H; Govind S; Hinnebusch AG
    Mol Cell Biol; 2005 Jul; 25(13):5626-38. PubMed ID: 15964818
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Histone acetylation and the control of the cell cycle.
    Magnaghi-Jaulin L; Ait-Si-Ali S; Harel-Bellan A
    Prog Cell Cycle Res; 2000; 4():41-7. PubMed ID: 10740813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum.
    Kanyal A; Rawat M; Gurung P; Choubey D; Anamika K; Karmodiya K
    FEBS J; 2018 May; 285(10):1767-1782. PubMed ID: 29284196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acetylation of TAF(I)68, a subunit of TIF-IB/SL1, activates RNA polymerase I transcription.
    Muth V; Nadaud S; Grummt I; Voit R
    EMBO J; 2001 Mar; 20(6):1353-62. PubMed ID: 11250901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Different genetic functions for the Rpd3(L) and Rpd3(S) complexes suggest competition between NuA4 and Rpd3(S).
    Biswas D; Takahata S; Stillman DJ
    Mol Cell Biol; 2008 Jul; 28(14):4445-58. PubMed ID: 18490440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1.
    Downey M; Knight B; Vashisht AA; Seller CA; Wohlschlegel JA; Shore D; Toczyski DP
    Curr Biol; 2013 Sep; 23(17):1638-48. PubMed ID: 23973296
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Histone acetyltransferases in control.
    Wade PA; Wolffe AP
    Curr Biol; 1997 Feb; 7(2):R82-4. PubMed ID: 9081669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae.
    Knott SR; Viggiani CJ; Tavaré S; Aparicio OM
    Genes Dev; 2009 May; 23(9):1077-90. PubMed ID: 19417103
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Control of muscle development by dueling HATs and HDACs.
    McKinsey TA; Zhang CL; Olson EN
    Curr Opin Genet Dev; 2001 Oct; 11(5):497-504. PubMed ID: 11532390
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Histone Deacetylases Hst1 and Rpd3 Integrate De Novo NAD
    Groth B; Lee YC; Huang CC; McDaniel M; Huang K; Lee LH; Lin SJ
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175754
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome-wide characterisation of the Gcn5 histone acetyltransferase in budding yeast during stress adaptation reveals evolutionarily conserved and diverged roles.
    Xue-Franzén Y; Johnsson A; Brodin D; Henriksson J; Bürglin TR; Wright AP
    BMC Genomics; 2010 Mar; 11():200. PubMed ID: 20338033
    [TBL] [Abstract][Full Text] [Related]  

  • 58. HAT-HDAC interplay modulates global histone H3K14 acetylation in gene-coding regions during stress.
    Johnsson A; Durand-Dubief M; Xue-Franzén Y; Rönnerblad M; Ekwall K; Wright A
    EMBO Rep; 2009 Sep; 10(9):1009-14. PubMed ID: 19633696
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interaction of histone acetylases and deacetylases in vivo.
    Yamagoe S; Kanno T; Kanno Y; Sasaki S; Siegel RM; Lenardo MJ; Humphrey G; Wang Y; Nakatani Y; Howard BH; Ozato K
    Mol Cell Biol; 2003 Feb; 23(3):1025-33. PubMed ID: 12529406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The histone deacetylase Rpd3p is required for transient changes in genomic expression in response to stress.
    Alejandro-Osorio AL; Huebert DJ; Porcaro DT; Sonntag ME; Nillasithanukroh S; Will JL; Gasch AP
    Genome Biol; 2009; 10(5):R57. PubMed ID: 19470158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.