These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1549432)

  • 1. Categorical time production: evidence for discrete timing in motor control.
    Collyer CE; Broadbent HA; Church RM
    Percept Psychophys; 1992 Feb; 51(2):134-44. PubMed ID: 1549432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preferred rates of repetitive tapping and categorical time production.
    Collyer CE; Broadbent HA; Church RM
    Percept Psychophys; 1994 Apr; 55(4):443-53. PubMed ID: 8036123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor disorder and the timing of repetitive movements.
    Wing AM; Keele S; Margolin DI
    Ann N Y Acad Sci; 1984; 423():183-92. PubMed ID: 6588784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Timing and trajectory in rhythm production.
    Doumas M; Wing AM
    J Exp Psychol Hum Percept Perform; 2007 Apr; 33(2):442-55. PubMed ID: 17469978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of time intervals from segmented and nonsegmented inputs.
    Grondin S
    Percept Psychophys; 1992 Sep; 52(3):345-50. PubMed ID: 1408645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing precision in continuation and synchronization tapping.
    Semjen A; Schulze HH; Vorberg D
    Psychol Res; 2000; 63(2):137-47. PubMed ID: 10946587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The perceptual centre of a stimulus as the cue for synchronization to a metronome: evidence from asynchronies.
    Vos PG; Mates J; van Kruysbergen NW
    Q J Exp Psychol A; 1995 Nov; 48(4):1024-40. PubMed ID: 8559964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in duration discrimination of filled and empty auditory intervals as a function of base duration.
    Rammsayer TH
    Atten Percept Psychophys; 2010 Aug; 72(6):1591-600. PubMed ID: 20675803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adding drift to the decomposition of simple isochronous tapping: an extension of the Wing-Kristofferson model.
    Collier GL; Ogden RT
    J Exp Psychol Hum Percept Perform; 2004 Oct; 30(5):853-72. PubMed ID: 15462625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing at peak force may be the hidden target controlled in continuation and synchronization tapping.
    Du Y; Clark JE; Whitall J
    Exp Brain Res; 2017 May; 235(5):1541-1554. PubMed ID: 28251338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Testing the co-existence of two timing strategies for motor control in a unique task: The synchronisation spatial-tapping task.
    Dione M; Delevoye-Turrell Y
    Hum Mov Sci; 2015 Oct; 43():45-60. PubMed ID: 26203523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timing goals in bimanual coordination.
    Semjen A; Summers JJ
    Q J Exp Psychol A; 2002 Jan; 55(1):155-71. PubMed ID: 11873845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral decomposition of variability in synchronization and continuation tapping: comparisons between auditory and visual pacing and feedback conditions.
    Chen Y; Repp BH; Patel AD
    Hum Mov Sci; 2002 Oct; 21(4):515-32. PubMed ID: 12450682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perturbations of auditory feedback delay and the timing of movement.
    Wing AM
    J Exp Psychol Hum Percept Perform; 1977 May; 3(2):175-86. PubMed ID: 864391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is proprioception important for the timing of motor activities?
    LaRue J; Bard C; Fleury M; Teasdale N; Paillard J; Forget R; Lamarre Y
    Can J Physiol Pharmacol; 1995 Feb; 73(2):255-61. PubMed ID: 7621364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monkeys time their pauses of movement and not their movement-kinematics during a synchronization-continuation rhythmic task.
    Donnet S; Bartolo R; Fernandes JM; Cunha JP; Prado L; Merchant H
    J Neurophysiol; 2014 May; 111(10):2138-49. PubMed ID: 24572098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Age-related differences in timing control of repetitive movement: application of the Wing-Kristofferson model.
    Greene LS; Williams HG
    Res Q Exerc Sport; 1993 Mar; 64(1):32-8. PubMed ID: 8451531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing variability in circle drawing and tapping: probing the relationship between event and emergent timing.
    Zelaznik HN; Spencer RM; Ivry RB; Baria A; Bloom M; Dolansky L; Justice S; Patterson K; Whetter E
    J Mot Behav; 2005 Sep; 37(5):395-403. PubMed ID: 16120566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perception and production of temporal intervals across a range of durations: evidence for a common timing mechanism.
    Ivry RB; Hazeltine RE
    J Exp Psychol Hum Percept Perform; 1995 Feb; 21(1):3-18. PubMed ID: 7707031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling accuracy and variability of motor timing in treated and untreated Parkinson's disease and healthy controls.
    Jones CR; Claassen DO; Yu M; Spies JR; Malone T; Dirnberger G; Jahanshahi M; Kubovy M
    Front Integr Neurosci; 2011; 5():81. PubMed ID: 22207839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.