These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 1549561)
1. A retroviral-like metal binding motif in an aminoacyl-tRNA synthetase is important for tRNA recognition. Miller WT; Schimmel P Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2032-5. PubMed ID: 1549561 [TBL] [Abstract][Full Text] [Related]
2. A metal-binding motif implicated in RNA recognition by an aminoacyl-tRNA synthetase and by a retroviral gene product. Miller WT; Schimmel P Mol Microbiol; 1992 May; 6(10):1259-62. PubMed ID: 1379318 [TBL] [Abstract][Full Text] [Related]
3. Evidence for a "cysteine-histidine box" metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase. Miller WT; Hill KA; Schimmel P Biochemistry; 1991 Jul; 30(28):6970-6. PubMed ID: 1712632 [TBL] [Abstract][Full Text] [Related]
4. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold. Landro JA; Schimmel P Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2261-5. PubMed ID: 8460131 [TBL] [Abstract][Full Text] [Related]
5. A covalent adduct between the uracil ring and the active site of an aminoacyl tRNA synthetase. Starzyk RM; Koontz SW; Schimmel P Nature; 1982 Jul; 298(5870):136-40. PubMed ID: 7045689 [TBL] [Abstract][Full Text] [Related]
6. Probing the principles of amino acid selection using the alanyl-tRNA synthetase from Escherichia coli. Tsui WC; Fersht AR Nucleic Acids Res; 1981 Sep; 9(18):4627-37. PubMed ID: 6117825 [TBL] [Abstract][Full Text] [Related]
7. A retroviral Cys-Xaa2-Cys-Xaa4-His-Xaa4-Cys peptide binds metal ions: spectroscopic studies and a proposed three-dimensional structure. Green LM; Berg JM Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4047-51. PubMed ID: 2786206 [TBL] [Abstract][Full Text] [Related]
8. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase. Glasfeld E; Landro JA; Schimmel P Biochemistry; 1996 Apr; 35(13):4139-45. PubMed ID: 8672449 [TBL] [Abstract][Full Text] [Related]
9. Mapping of the zinc binding domain of Escherichia coli methionyl-tRNA synthetase. Fourmy D; Meinnel T; Mechulam Y; Blanquet S J Mol Biol; 1993 Jun; 231(4):1068-77. PubMed ID: 8515465 [TBL] [Abstract][Full Text] [Related]
10. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related]
11. Polypeptide sequences essential for RNA recognition by an enzyme. Regan L; Bowie J; Schimmel P Science; 1987 Mar; 235(4796):1651-3. PubMed ID: 2435005 [TBL] [Abstract][Full Text] [Related]
12. Modular arrangement of functional domains along the sequence of an aminoacyl tRNA synthetase. Jasin M; Regan L; Schimmel P Nature; 1983 Dec 1-7; 306(5942):441-7. PubMed ID: 6358898 [TBL] [Abstract][Full Text] [Related]
13. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase. Wu MX; Hill KA Anal Biochem; 1993 Jun; 211(2):320-3. PubMed ID: 8317708 [TBL] [Abstract][Full Text] [Related]
14. Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase. Hill K; Schimmel P Biochemistry; 1989 Mar; 28(6):2577-86. PubMed ID: 2543446 [TBL] [Abstract][Full Text] [Related]
15. [tRNA and aminoacyl-tRNA synthetases from the liver of rabbits in experimental myocardial infarction]. Lukoshiavichius LIu; Rodovichius GA; Kovalenko MM; Pivoriunaĭte II; Prashkiavichius AK Vopr Med Khim; 1983; 29(4):65-9. PubMed ID: 6623997 [TBL] [Abstract][Full Text] [Related]
16. Double mimicry evades tRNA synthetase editing by toxic vegetable-sourced non-proteinogenic amino acid. Song Y; Zhou H; Vo MN; Shi Y; Nawaz MH; Vargas-Rodriguez O; Diedrich JK; Yates JR; Kishi S; Musier-Forsyth K; Schimmel P Nat Commun; 2017 Dec; 8(1):2281. PubMed ID: 29273753 [TBL] [Abstract][Full Text] [Related]
17. Suppression of a defective alanyl-tRNA synthetase in Escherichia coli: a compensatory mutation to high alanine affinity. Theall G; Low KB; Söll D Mol Gen Genet; 1977 Nov; 156(2):221-7. PubMed ID: 340903 [TBL] [Abstract][Full Text] [Related]
18. A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Bunjun S; Stathopoulos C; Graham D; Min B; Kitabatake M; Wang AL; Wang CC; Vivarès CP; Weiss LM; Söll D Proc Natl Acad Sci U S A; 2000 Nov; 97(24):12997-3002. PubMed ID: 11078517 [TBL] [Abstract][Full Text] [Related]
19. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase. Schulman LH; Pelka H Fed Proc; 1984 Dec; 43(15):2977-80. PubMed ID: 6389181 [TBL] [Abstract][Full Text] [Related]
20. Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. Nureki O; Kohno T; Sakamoto K; Miyazawa T; Yokoyama S J Biol Chem; 1993 Jul; 268(21):15368-73. PubMed ID: 8340367 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]