These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1549580)

  • 21. RNA-dependent RNA polymerases, viruses, and RNA silencing.
    Ahlquist P
    Science; 2002 May; 296(5571):1270-3. PubMed ID: 12016304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae.
    Ribas JC; Wickner RB
    J Biol Chem; 1998 Apr; 273(15):9306-11. PubMed ID: 9535925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae.
    Wickner RB
    Annu Rev Microbiol; 1992; 46():347-75. PubMed ID: 1444259
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribosomal frameshifting requires a pseudoknot in the Saccharomyces cerevisiae double-stranded RNA virus.
    Tzeng TH; Tu CL; Bruenn JA
    J Virol; 1992 Feb; 66(2):999-1006. PubMed ID: 1731118
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A closely related group of RNA-dependent RNA polymerases from double-stranded RNA viruses.
    Bruenn JA
    Nucleic Acids Res; 1993 Dec; 21(24):5667-9. PubMed ID: 8284213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Saccharomyces cerevisiae L-BC double-stranded RNA virus replicase recognizes the L-A positive-strand RNA 3' end.
    Ribas JC; Wickner RB
    J Virol; 1996 Jan; 70(1):292-7. PubMed ID: 8523538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes.
    Krupovic M; Dolja VV; Koonin EV
    Biol Direct; 2015 Mar; 10():12. PubMed ID: 25886840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. RNA structural requirements for RNA binding, replication, and packaging in the yeast double-stranded RNA virus.
    Shen Y; Bruenn JA
    Virology; 1993 Aug; 195(2):481-91. PubMed ID: 8337825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. K28, a unique double-stranded RNA killer virus of Saccharomyces cerevisiae.
    Schmitt MJ; Tipper DJ
    Mol Cell Biol; 1990 Sep; 10(9):4807-15. PubMed ID: 2201903
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vivo mapping of a sequence required for interference with the yeast killer virus.
    Huan BF; Shen YQ; Bruenn JA
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1271-5. PubMed ID: 1996327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functions of conserved motifs in the RNA-dependent RNA polymerase of a yeast double-stranded RNA virus.
    Routhier E; Bruenn JA
    J Virol; 1998 May; 72(5):4427-9. PubMed ID: 9557735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new wine Saccharomyces cerevisiae killer toxin (Klus), encoded by a double-stranded rna virus, with broad antifungal activity is evolutionarily related to a chromosomal host gene.
    Rodríguez-Cousiño N; Maqueda M; Ambrona J; Zamora E; Esteban R; Ramírez M
    Appl Environ Microbiol; 2011 Mar; 77(5):1822-32. PubMed ID: 21239561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Evolution of RNA-dependent RNA polymerases of positive riboviruses].
    Kunin EV; Gorbalenia AE; Chumakov KM; Donchenko AP; Blinov VM
    Mol Gen Mikrobiol Virusol; 1987 Jul; (7):27-39. PubMed ID: 3670321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal frameshifting efficiency and gag/gag-pol ratio are critical for yeast M1 double-stranded RNA virus propagation.
    Dinman JD; Wickner RB
    J Virol; 1992 Jun; 66(6):3669-76. PubMed ID: 1583726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple mitochondrial viruses in an isolate of the Dutch Elm disease fungus Ophiostoma novo-ulmi.
    Hong Y; Dover SL; Cole TE; Brasier CM; Buck KW
    Virology; 1999 May; 258(1):118-27. PubMed ID: 10329574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Initiation by the yeast viral transcriptase in vitro.
    Nemeroff ME; Bruenn JA
    J Biol Chem; 1987 May; 262(14):6785-7. PubMed ID: 3553191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of two cis sites with the RNA replicase of the yeast L-A virus.
    Fujimura T; Wickner RB
    J Biol Chem; 1992 Feb; 267(4):2708-13. PubMed ID: 1733966
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conservation of the putative methyltransferase domain: a hallmark of the 'Sindbis-like' supergroup of positive-strand RNA viruses.
    Rozanov MN; Koonin EV; Gorbalenya AE
    J Gen Virol; 1992 Aug; 73 ( Pt 8)():2129-34. PubMed ID: 1645151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rift Valley fever virus L segment: correction of the sequence and possible functional role of newly identified regions conserved in RNA-dependent polymerases.
    Müller R; Poch O; Delarue M; Bishop DH; Bouloy M
    J Gen Virol; 1994 Jun; 75 ( Pt 6)():1345-52. PubMed ID: 7515937
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolutionary relationships among putative RNA-dependent RNA polymerases encoded by a mitochondrial virus-like RNA in the Dutch elm disease fungus, Ophiostoma novo-ulmi, by other viruses and virus-like RNAs and by the Arabidopsis mitochondrial genome.
    Hong Y; Cole TE; Brasier CM; Buck KW
    Virology; 1998 Jun; 246(1):158-69. PubMed ID: 9657003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.