These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1549607)

  • 1. Participation of bacteriorhodopsin active-site lysine backbone in vibrations associated with retinal photochemistry.
    Gat Y; Grossjean M; Pinevsky I; Takei H; Rothman Z; Sigrist H; Lewis A; Sheves M
    Proc Natl Acad Sci U S A; 1992 Mar; 89(6):2434-8. PubMed ID: 1549607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational changes in the core structure of bacteriorhodopsin.
    Kluge T; Olejnik J; Smilowitz L; Rothschild KJ
    Biochemistry; 1998 Jul; 37(28):10279-85. PubMed ID: 9665736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the 9-methyl group of the retinal on the photocycle of bacteriorhodopsin studied by time-resolved rapid-scan and static low-temperature Fourier transform infrared difference spectroscopy.
    Weidlich O; Friedman N; Sheves M; Siebert F
    Biochemistry; 1995 Oct; 34(41):13502-10. PubMed ID: 7577939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fourier transform infrared evidence for proline structural changes during the bacteriorhodopsin photocycle.
    Rothschild KJ; He YW; Gray D; Roepe PD; Pelletier SL; Brown RS; Herzfeld J
    Proc Natl Acad Sci U S A; 1989 Dec; 86(24):9832-5. PubMed ID: 2602377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
    Bagley K; Dollinger G; Eisenstein L; Singh AK; Zimányi L
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4972-6. PubMed ID: 6956906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond infrared spectroscopy of bacteriorhodopsin chromophore isomerization.
    Herbst J; Heyne K; Diller R
    Science; 2002 Aug; 297(5582):822-5. PubMed ID: 12161649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assignment of the hydrogen-out-of-plane and -in-plane vibrations of the retinal chromophore in the K intermediate of pharaonis phoborhodopsin.
    Furutani Y; Sudo Y; Wada A; Ito M; Shimono K; Kamo N; Kandori H
    Biochemistry; 2006 Oct; 45(39):11836-43. PubMed ID: 17002284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation of the bacteriorhodopsin chromophore probed by polarized Fourier transform infrared difference spectroscopy.
    Earnest TN; Roepe P; Braiman MS; Gillespie J; Rothschild KJ
    Biochemistry; 1986 Dec; 25(24):7793-8. PubMed ID: 3801443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active site lysine backbone undergoes conformational changes in the bacteriorhodopsin photocycle.
    Takei H; Gat Y; Rothman Z; Lewis A; Sheves M
    J Biol Chem; 1994 Mar; 269(10):7387-9. PubMed ID: 8125956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy.
    Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A
    Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study.
    Morgan JE; Vakkasoglu AS; Lanyi JK; Gennis RB; Maeda A
    Biochemistry; 2010 Apr; 49(15):3273-81. PubMed ID: 20232848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aspartic acid-212 of bacteriorhodopsin is ionized in the M and N photocycle intermediates: an FTIR study on specifically 13C-labeled reconstituted purple membranes.
    Fahmy K; Weidlich O; Engelhard M; Sigrist H; Siebert F
    Biochemistry; 1993 Jun; 32(22):5862-9. PubMed ID: 8504106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On modeling the vibrational spectra of 14-s-cis retinal conformers in bacteriorhodopsin.
    Mathies RA; Li XY
    Biophys Chem; 1995; 56(1-2):47-55. PubMed ID: 7662868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for light-induced lysine conformational changes during the primary event of the bacteriorhodopsin photocycle.
    McMaster E; Lewis A
    Biochem Biophys Res Commun; 1988 Oct; 156(1):86-91. PubMed ID: 3140817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trp86 --> Phe replacement in bacteriorhodopsin affects a water molecule near Asp85 and light adaptation.
    Hatanaka M; Kashima R; Kandori H; Friedman N; Sheves M; Needleman R; Lanyi JK; Maeda A
    Biochemistry; 1997 May; 36(18):5493-8. PubMed ID: 9154932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes.
    Moltke S; Nevzorov AA; Sakai N; Wallat I; Job C; Nakanishi K; Heyn MP; Brown MF
    Biochemistry; 1998 Aug; 37(34):11821-35. PubMed ID: 9718305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared evidence for Schiff base alteration in the first step of the bacteriorhodopsin photocycle.
    Rothschild KJ; Roepe P; Lugtenburg J; Pardoen JA
    Biochemistry; 1984 Dec; 23(25):6103-9. PubMed ID: 6525348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine.
    Xiao Y; Hutson MS; Belenky M; Herzfeld J; Braiman MS
    Biochemistry; 2004 Oct; 43(40):12809-18. PubMed ID: 15461453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.