These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 1549607)

  • 21. Vibrational spectroscopy of bacteriorhodopsin mutants: evidence for the interaction of proline-186 with the retinylidene chromophore.
    Rothschild KJ; He YW; Mogi T; Marti T; Stern LJ; Khorana HG
    Biochemistry; 1990 Jun; 29(25):5954-60. PubMed ID: 2166567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. FTIR difference spectroscopy of the bacteriorhodopsin mutant Tyr-185-->Phe: detection of a stable O-like species and characterization of its photocycle at low temperature.
    He Y; Krebs MP; Fischer WB; Khorana HG; Rothschild KJ
    Biochemistry; 1993 Mar; 32(9):2282-90. PubMed ID: 8443171
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine.
    Dollinger G; Eisenstein L; Lin SL; Nakanishi K; Termini J
    Biochemistry; 1986 Oct; 25(21):6524-33. PubMed ID: 3790539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacteriorhodopsin's L550 intermediate contains a C14-C15 s-trans-retinal chromophore.
    Fodor SP; Pollard WT; Gebhard R; van den Berg EM; Lugtenburg J; Mathies RA
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2156-60. PubMed ID: 3353373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.
    Weidlich O; Ujj L; Jäger F; Atkinson GH
    Biophys J; 1997 May; 72(5):2329-41. PubMed ID: 9129836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformation and dynamics of [3-13C]Ala- labeled bacteriorhodopsin and bacterioopsin, induced by interaction with retinal and its analogs, as studied by 13C nuclear magnetic resonance.
    Tuzi S; Yamaguchi S; Naito A; Needleman R; Lanyi JK; Saitô H
    Biochemistry; 1996 Jun; 35(23):7520-7. PubMed ID: 8652531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of a water molecule in the active-site of bacteriorhodopsin: hydrogen bonding changes during the primary photoreaction.
    Fischer WB; Sonar S; Marti T; Khorana HG; Rothschild KJ
    Biochemistry; 1994 Nov; 33(43):12757-62. PubMed ID: 7947680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and photochemistry of 13-desmethyl bacteriorhodopsin.
    Gillespie NB; Ren L; Ramos L; Daniell H; Dews D; Utzat KA; Stuart JA; Buck CH; Birge RR
    J Phys Chem B; 2005 Aug; 109(33):16142-52. PubMed ID: 16853051
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deprotonation of tyrosines in bacteriorhodopsin as studied by Fourier transform infrared spectroscopy with deuterium and nitrate labeling.
    Lin SL; Ormos P; Eisenstein L; Govindjee R; Konno K; Nakanishi K
    Biochemistry; 1987 Dec; 26(25):8327-31. PubMed ID: 3442658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of protein conformation change from alpha(II) to alpha(I) on the bacteriorhodopsin photocycle.
    Wang J; El-Sayed MA
    Biophys J; 2000 Apr; 78(4):2031-6. PubMed ID: 10733981
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Femtosecond primary events in bacteriorhodopsin and its retinal modified analogs: revision of commonly accepted interpretation of electronic spectra of transient intermediates in the bacteriorhodopsin photocycle.
    Abramczyk H
    J Chem Phys; 2004 Jun; 120(23):11120-32. PubMed ID: 15268142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-directed isotope labeling and FTIR spectroscopy: assignment of tyrosine bands in the bR-->M difference spectrum of bacteriorhodopsin.
    Liu XM; Sonar S; Lee CP; Coleman M; RajBhandary UL; Rothschild KJ
    Biophys Chem; 1995; 56(1-2):63-70. PubMed ID: 7662870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FTIR spectroscopy of the K photointermediate of Neurospora rhodopsin: structural changes of the retinal, protein, and water molecules after photoisomerization.
    Furutani Y; Bezerra AG; Waschuk S; Sumii M; Brown LS; Kandori H
    Biochemistry; 2004 Aug; 43(30):9636-46. PubMed ID: 15274618
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fourier transform infrared study of the N intermediate of bacteriorhodopsin.
    Pfefferlé JM; Maeda A; Sasaki J; Yoshizawa T
    Biochemistry; 1991 Jul; 30(26):6548-56. PubMed ID: 2054353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Water structural changes in the L and M photocycle intermediates of bacteriorhodopsin as revealed by time-resolved step-scan Fourier transform infrared (FTIR) spectroscopy.
    Morgan JE; Vakkasoglu AS; Gennis RB; Maeda A
    Biochemistry; 2007 Mar; 46(10):2787-96. PubMed ID: 17300175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton translocation by bacteriorhodopsin in the absence of substantial conformational changes.
    Tittor J; Paula S; Subramaniam S; Heberle J; Henderson R; Oesterhelt D
    J Mol Biol; 2002 May; 319(2):555-65. PubMed ID: 12051928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Polarized Fourier transform infrared spectroscopy of bacteriorhodopsin. Transmembrane alpha helices are resistant to hydrogen/deuterium exchange.
    Earnest TN; Herzfeld J; Rothschild KJ
    Biophys J; 1990 Dec; 58(6):1539-46. PubMed ID: 2275968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Early and late M intermediates in the bacteriorhodopsin photocycle: a solid-state NMR study.
    Hu JG; Sun BQ; Bizounok M; Hatcher ME; Lansing JC; Raap J; Verdegem PJ; Lugtenburg J; Griffin RG; Herzfeld J
    Biochemistry; 1998 Jun; 37(22):8088-96. PubMed ID: 9609703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-mediated hydrogen-bonded network on the cytoplasmic side of the Schiff base of the L photointermediate of bacteriorhodopsin.
    Maeda A; Herzfeld J; Belenky M; Needleman R; Gennis RB; Balashov SP; Ebrey TG
    Biochemistry; 2003 Dec; 42(48):14122-9. PubMed ID: 14640679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distorted structure of the retinal chromophore in bacteriorhodopsin resolved by 2H-NMR.
    Ulrich AS; Watts A; Wallat I; Heyn MP
    Biochemistry; 1994 May; 33(18):5370-5. PubMed ID: 8180159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.