These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 15496405)

  • 1. Two-dimensional transcriptome analysis in chemostat cultures. Combinatorial effects of oxygen availability and macronutrient limitation in Saccharomyces cerevisiae.
    Tai SL; Boer VM; Daran-Lapujade P; Walsh MC; de Winde JH; Daran JM; Pronk JT
    J Biol Chem; 2005 Jan; 280(1):437-47. PubMed ID: 15496405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The genome-wide transcriptional responses of Saccharomyces cerevisiae grown on glucose in aerobic chemostat cultures limited for carbon, nitrogen, phosphorus, or sulfur.
    Boer VM; de Winde JH; Pronk JT; Piper MD
    J Biol Chem; 2003 Jan; 278(5):3265-74. PubMed ID: 12414795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.
    de Groot MJL; Daran-Lapujade P; van Breukelen B; Knijnenburg TA; de Hulster EAF; Reinders MJT; Pronk JT; Heck AJR; Slijper M
    Microbiology (Reading); 2007 Nov; 153(Pt 11):3864-3878. PubMed ID: 17975095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Tai SL; Snoek I; Luttik MAH; Almering MJH; Walsh MC; Pronk JT; Daran JM
    Microbiology (Reading); 2007 Mar; 153(Pt 3):877-886. PubMed ID: 17322208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-wide transcriptional analysis of aerobic and anaerobic chemostat cultures of Saccharomyces cerevisiae.
    ter Linde JJ; Liang H; Davis RW; Steensma HY; van Dijken JP; Pronk JT
    J Bacteriol; 1999 Dec; 181(24):7409-13. PubMed ID: 10601195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription factor control of growth rate dependent genes in Saccharomyces cerevisiae: a three factor design.
    Fazio A; Jewett MC; Daran-Lapujade P; Mustacchi R; Usaite R; Pronk JT; Workman CT; Nielsen J
    BMC Genomics; 2008 Jul; 9():341. PubMed ID: 18638364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinatorial effects of environmental parameters on transcriptional regulation in Saccharomyces cerevisiae: a quantitative analysis of a compendium of chemostat-based transcriptome data.
    Knijnenburg TA; Daran JM; van den Broek MA; Daran-Lapujade PA; de Winde JH; Pronk JT; Reinders MJ; Wessels LF
    BMC Genomics; 2009 Jan; 10():53. PubMed ID: 19173729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting combinatorial cultivation conditions to infer transcriptional regulation.
    Knijnenburg TA; de Winde JH; Daran JM; Daran-Lapujade P; Pronk JT; Reinders MJ; Wessels LF
    BMC Genomics; 2007 Jan; 8():25. PubMed ID: 17241460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identity of the growth-limiting nutrient strongly affects storage carbohydrate accumulation in anaerobic chemostat cultures of Saccharomyces cerevisiae.
    Hazelwood LA; Walsh MC; Luttik MA; Daran-Lapujade P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2009 Nov; 75(21):6876-85. PubMed ID: 19734328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.
    De Nicola R; Hazelwood LA; De Hulster EA; Walsh MC; Knijnenburg TA; Reinders MJ; Walker GM; Pronk JT; Daran JM; Daran-Lapujade P
    Appl Environ Microbiol; 2007 Dec; 73(23):7680-92. PubMed ID: 17933919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the Saccharomyces cerevisiae fermentation switch: dynamic transcriptional response to anaerobicity and glucose-excess.
    van den Brink J; Daran-Lapujade P; Pronk JT; de Winde JH
    BMC Genomics; 2008 Feb; 9():100. PubMed ID: 18304306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low oxygen levels as a trigger for enhancement of respiratory metabolism in Saccharomyces cerevisiae.
    Rintala E; Toivari M; Pitkänen JP; Wiebe MG; Ruohonen L; Penttilä M
    BMC Genomics; 2009 Oct; 10():461. PubMed ID: 19804647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions.
    Wiebe MG; Rintala E; Tamminen A; Simolin H; Salusjärvi L; Toivari M; Kokkonen JT; Kiuru J; Ketola RA; Jouhten P; Huuskonen A; Maaheimo H; Ruohonen L; Penttilä M
    FEMS Yeast Res; 2008 Feb; 8(1):140-54. PubMed ID: 17425669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae. A chemostat culture study.
    Daran-Lapujade P; Jansen ML; Daran JM; van Gulik W; de Winde JH; Pronk JT
    J Biol Chem; 2004 Mar; 279(10):9125-38. PubMed ID: 14630934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged selection in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae causes a partial loss of glycolytic capacity.
    Jansen MLA; Diderich JA; Mashego M; Hassane A; de Winde JH; Daran-Lapujade P; Pronk JT
    Microbiology (Reading); 2005 May; 151(Pt 5):1657-1669. PubMed ID: 15870473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
    Boer VM; Tai SL; Vuralhan Z; Arifin Y; Walsh MC; Piper MD; de Winde JH; Pronk JT; Daran JM
    FEMS Yeast Res; 2007 Jun; 7(4):604-20. PubMed ID: 17419774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular responses of Saccharomyces cerevisiae at near-zero growth rates: transcriptome analysis of anaerobic retentostat cultures.
    Boender LG; van Maris AJ; de Hulster EA; Almering MJ; van der Klei IJ; Veenhuis M; de Winde JH; Pronk JT; Daran-Lapujade P
    FEMS Yeast Res; 2011 Dec; 11(8):603-20. PubMed ID: 22093745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae.
    Piper MD; Daran-Lapujade P; Bro C; Regenberg B; Knudsen S; Nielsen J; Pronk JT
    J Biol Chem; 2002 Oct; 277(40):37001-8. PubMed ID: 12121991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory factors controlling transcription of Saccharomyces cerevisiae IXR1 by oxygen levels: a model of transcriptional adaptation from aerobiosis to hypoxia implicating ROX1 and IXR1 cross-regulation.
    Castro-Prego R; Lamas-Maceiras M; Soengas P; Carneiro I; González-Siso I; Cerdán ME
    Biochem J; 2009 Dec; 425(1):235-43. PubMed ID: 19807692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiological and genome-wide transcriptional responses of Saccharomyces cerevisiae to high carbon dioxide concentrations.
    Aguilera J; Petit T; de Winde JH; Pronk JT
    FEMS Yeast Res; 2005 Apr; 5(6-7):579-93. PubMed ID: 15780657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.