These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 1549650)

  • 41. d-Fenfluramine selectively decreases carbohydrate but not protein intake in obese subjects.
    Wurtman JJ; Wurtman RJ
    Int J Obes; 1984; 8 Suppl 1():79-84. PubMed ID: 6534896
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dietary taste patterns by sex and weight status in the Netherlands.
    van Langeveld AWB; Teo PS; de Vries JHM; Feskens EJM; de Graaf C; Mars M
    Br J Nutr; 2018 May; 119(10):1195-1206. PubMed ID: 29759103
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Altering the temporal distribution of energy intake with isoenergetically dense foods given as snacks does not affect total daily energy intake in normal-weight men.
    Johnstone AM; Shannon E; Whybrow S; Reid CA; Stubbs RJ
    Br J Nutr; 2000 Jan; 83(1):7-14. PubMed ID: 10703459
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential development of tolerance to the effects of d-amphetamine and fenfluramine on food intake in baboons.
    Foltin RW
    J Pharmacol Exp Ther; 1990 Mar; 252(3):960-9. PubMed ID: 2319478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metabolic mechanism of the anorectic and leptogenic effects of the serotonin agonist fenfluramine.
    Even P; Nicolaïdis S
    Appetite; 1986; 7 Suppl():141-63. PubMed ID: 3740837
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of dexfenfluramine on eating habits in a Dutch ambulatory android overweight population with an overconsumption of snacks.
    Drent ML; Zelissen PM; Koppeschaar HP; Nieuwenhuyzen Kruseman AC; Lutterman JA; van der Veen EA
    Int J Obes Relat Metab Disord; 1995 May; 19(5):299-304. PubMed ID: 7647820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Taste of a 24-h diet and its effect on subsequent food preferences and satiety.
    Griffioen-Roose S; Hogenkamp PS; Mars M; Finlayson G; de Graaf C
    Appetite; 2012 Aug; 59(1):1-8. PubMed ID: 22445775
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sensitivity of the appetite control system in obese subjects to nutritional and serotoninergic challenges.
    Hill AJ; Blundell JE
    Int J Obes; 1990 Mar; 14(3):219-33. PubMed ID: 2187822
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of the covert manipulation of macronutrient intake on energy intake and the variability in daily food intake in nonobese men.
    Rumpler WV; Kramer M; Rhodes DG; Paul DR
    Int J Obes (Lond); 2006 May; 30(5):774-81. PubMed ID: 16314879
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Food intake in baboons: effects of d-amphetamine and fenfluramine.
    Foltin RW; Fischman MW
    Pharmacol Biochem Behav; 1988 Nov; 31(3):585-92. PubMed ID: 3251242
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Central and peripheral contributions of endogenous opioid systems to nutrient selection in rats.
    Marks-Kaufman R; Plager A; Kanarek RB
    Psychopharmacology (Berl); 1985; 85(4):414-8. PubMed ID: 3927336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effect of d-fenfluramine on basal glucose turnover and fat-feeding-induced insulin resistance in rats.
    Storlien LH; Thorburn AW; Smythe GA; Jenkins AB; Chisholm DJ; Kraegen EW
    Diabetes; 1989 Apr; 38(4):499-503. PubMed ID: 2647557
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Zinc status specifically changes preferences for carbohydrate and protein in rats selecting from separate carbohydrate-, protein-, and fat-containing diets.
    Rains TM; Shay NF
    J Nutr; 1995 Nov; 125(11):2874-9. PubMed ID: 7472669
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy density of foods and beverages in the Australian food supply: influence of macronutrients and comparison to dietary intake.
    Crowe TC; Fontaine HL; Gibbons CJ; Cameron-Smith D; Swinburn BA
    Eur J Clin Nutr; 2004 Nov; 58(11):1485-91. PubMed ID: 15173855
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Covert manipulation of the dietary fat to carbohydrate ratio of isoenergetically dense diets: effect on food intake in feeding men ad libitum.
    Stubbs RJ; Harbron CG; Prentice AM
    Int J Obes Relat Metab Disord; 1996 Jul; 20(7):651-60. PubMed ID: 8817359
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The ability of certain anorexic drugs to suppress food consumption depends on the nutrient composition of the test diet.
    Moses PL; Wurtman RJ
    Life Sci; 1984 Sep; 35(12):1297-300. PubMed ID: 6482653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison.
    Jensen K; Simpson SJ; Nielsen VH; Hunt J; Raubenheimer D; Mayntz D
    Br J Nutr; 2014 Oct; 112(7):1226-33. PubMed ID: 25141190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gastromotor mechanism of fenfluramine anorexia.
    Booth DA; Gibson EL; Baker BJ
    Appetite; 1986; 7 Suppl():57-69. PubMed ID: 3527062
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Differing effects of high-fat or high-carbohydrate meals on food hedonics in overweight and obese individuals.
    Hopkins M; Gibbons C; Caudwell P; Blundell JE; Finlayson G
    Br J Nutr; 2016 May; 115(10):1875-84. PubMed ID: 27001260
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of an acute reduction in carbohydrate intake on subsequent food intake in healthy men.
    Sparti A; Windhauser MM; Champagne CM; Bray GA
    Am J Clin Nutr; 1997 Nov; 66(5):1144-50. PubMed ID: 9356531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.