BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 15496594)

  • 1. Role of the heme regulatory motif in the heme-mediated inhibition of mitochondrial import of 5-aminolevulinate synthase.
    Munakata H; Sun JY; Yoshida K; Nakatani T; Honda E; Hayakawa S; Furuyama K; Hayashi N
    J Biochem; 2004 Aug; 136(2):233-8. PubMed ID: 15496594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Haem regulation of the mitochondrial import of the Kluyveromyces lactis 5-aminolaevulinate synthase: an organelle approach.
    González-Domínguez M; Freire-Picos MA; Cerdán ME
    Yeast; 2001 Jan; 18(1):41-8. PubMed ID: 11124700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erythroid-specific 5-aminolevulinate synthase protein is stabilized by low oxygen and proteasomal inhibition.
    Abu-Farha M; Niles J; Willmore WG
    Biochem Cell Biol; 2005 Oct; 83(5):620-30. PubMed ID: 16234850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Haeme-regulated degradation of delta-aminolevulinate synthase 1 in rat liver mitochondria.
    Yoshino K; Munakata H; Kuge O; Ito A; Ogishima T
    J Biochem; 2007 Oct; 142(4):453-8. PubMed ID: 17761694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The solution structure and heme binding of the presequence of murine 5-aminolevulinate synthase.
    Goodfellow BJ; Dias JS; Ferreira GC; Henklein P; Wray V; Macedo AL
    FEBS Lett; 2001 Sep; 505(2):325-31. PubMed ID: 11566198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular regulation of 5-aminolevulinate synthase. Diseases related to heme biosynthesis.
    May BK; Bhasker CR; Bawden MJ; Cox TC
    Mol Biol Med; 1990 Oct; 7(5):405-21. PubMed ID: 2095458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active site of 5-aminolevulinate synthase resides at the subunit interface. Evidence from in vivo heterodimer formation.
    Tan D; Ferreira GC
    Biochemistry; 1996 Jul; 35(27):8934-41. PubMed ID: 8688429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate-279 in aminolevulinate synthase affects enzyme catalysis through enhancing the function of the pyridoxal 5'-phosphate cofactor.
    Gong J; Hunter GA; Ferreira GC
    Biochemistry; 1998 Mar; 37(10):3509-17. PubMed ID: 9521672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translational control of erythroid delta-aminolevulinate synthase in immature human erythroid cells by heme.
    Smith SJ; Cox TM
    Cell Mol Biol (Noisy-le-grand); 1997 Feb; 43(1):103-14. PubMed ID: 9074795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis.
    Gong J; Kay CJ; Barber MJ; Ferreira GC
    Biochemistry; 1996 Nov; 35(45):14109-17. PubMed ID: 8916896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis.
    Stojanovski BM; Breydo L; Uversky VN; Ferreira GC
    Biochim Biophys Acta; 2016 May; 1864(5):441-52. PubMed ID: 26854603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of the mitochondrial targeting sequence and mechanism in human citrate synthase.
    Cheng TL; Liao CC; Tsai WH; Lin CC; Yeh CW; Teng CF; Chang WT
    J Cell Biochem; 2009 Aug; 107(5):1002-15. PubMed ID: 19479947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation by heme of mitochondrial protein transport through a conserved amino acid motif.
    Lathrop JT; Timko MP
    Science; 1993 Jan; 259(5094):522-5. PubMed ID: 8424176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indispensable function for embryogenesis, expression and regulation of the nonspecific form of the 5-aminolevulinate synthase gene in mouse.
    Okano S; Zhou L; Kusaka T; Shibata K; Shimizu K; Gao X; Kikuchi Y; Togashi Y; Hosoya T; Takahashi S; Nakajima O; Yamamoto M
    Genes Cells; 2010 Jan; 15(1):77-89. PubMed ID: 20015225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of delta-aminolaevulinate synthase encoded by the parasite gene in de novo haem synthesis by Plasmodium falciparum.
    Varadharajan S; Dhanasekaran S; Bonday ZQ; Rangarajan PN; Padmanaban G
    Biochem J; 2002 Oct; 367(Pt 2):321-7. PubMed ID: 12119044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias.
    Peoc'h K; Nicolas G; Schmitt C; Mirmiran A; Daher R; Lefebvre T; Gouya L; Karim Z; Puy H
    Mol Genet Metab; 2019 Nov; 128(3):190-197. PubMed ID: 30737140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and purification of His-tagged rat mitochondrial short-chain 3-hydroxyacyl-CoA dehydrogenase wild-type and Ser137 mutant proteins.
    Liu X; Chu X; Yu W; Li P; Li D
    Protein Expr Purif; 2004 Oct; 37(2):344-51. PubMed ID: 15358356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase.
    Dailey TA; Woodruff JH; Dailey HA
    Biochem J; 2005 Mar; 386(Pt 2):381-6. PubMed ID: 15482256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the xenosensors regulating human 5-aminolevulinate synthase.
    Podvinec M; Handschin C; Looser R; Meyer UA
    Proc Natl Acad Sci U S A; 2004 Jun; 101(24):9127-32. PubMed ID: 15178759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Mechanisms for Heme-dependent Degradation of ALAS1 Protein as a Component of Negative Feedback Regulation of Heme Biosynthesis.
    Kubota Y; Nomura K; Katoh Y; Yamashita R; Kaneko K; Furuyama K
    J Biol Chem; 2016 Sep; 291(39):20516-29. PubMed ID: 27496948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.