These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 15496663)

  • 1. The subfornical organ is the primary locus of sodium-level sensing by Na(x) sodium channels for the control of salt-intake behavior.
    Hiyama TY; Watanabe E; Okado H; Noda M
    J Neurosci; 2004 Oct; 24(42):9276-81. PubMed ID: 15496663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The subfornical organ, a specialized sodium channel, and the sensing of sodium levels in the brain.
    Noda M
    Neuroscientist; 2006 Feb; 12(1):80-91. PubMed ID: 16394195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium sensing in the subfornical organ and body-fluid homeostasis.
    Hiyama TY; Noda M
    Neurosci Res; 2016 Dec; 113():1-11. PubMed ID: 27521454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydromineral neuroendocrinology: mechanism of sensing sodium levels in the mammalian brain.
    Noda M
    Exp Physiol; 2007 May; 92(3):513-22. PubMed ID: 17350991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endothelin-3 expression in the subfornical organ enhances the sensitivity of Na(x), the brain sodium-level sensor, to suppress salt intake.
    Hiyama TY; Yoshida M; Matsumoto M; Suzuki R; Matsuda T; Watanabe E; Noda M
    Cell Metab; 2013 Apr; 17(4):507-19. PubMed ID: 23541371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nav2/NaG channel is involved in control of salt-intake behavior in the CNS.
    Watanabe E; Fujikawa A; Matsunaga H; Yasoshima Y; Sako N; Yamamoto T; Saegusa C; Noda M
    J Neurosci; 2000 Oct; 20(20):7743-51. PubMed ID: 11027237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium sensing in the brain.
    Noda M; Hiyama TY
    Pflugers Arch; 2015 Mar; 467(3):465-74. PubMed ID: 25491503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial Nax channels control lactate signaling to neurons for brain [Na+] sensing.
    Shimizu H; Watanabe E; Hiyama TY; Nagakura A; Fujikawa A; Okado H; Yanagawa Y; Obata K; Noda M
    Neuron; 2007 Apr; 54(1):59-72. PubMed ID: 17408578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na(x)-deficient mice show normal vasopressin response to dehydration.
    Nagakura A; Hiyama TY; Noda M
    Neurosci Lett; 2010 Mar; 472(3):161-5. PubMed ID: 20138121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat.
    Weisinger RS; Denton DA; Di Nicolantonio R; Hards DK; McKinley MJ; Oldfield B; Osborne PG
    Brain Res; 1990 Aug; 526(1):23-30. PubMed ID: 2078815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of voluntary salt-intake behavior in Nax-gene deficient and wild-type mice with reference to peripheral taste inputs.
    Watanabe U; Shimura T; Sako N; Kitagawa J; Shingai T; Watanabe E; Noda M; Yamamoto T
    Brain Res; 2003 Mar; 967(1-2):247-56. PubMed ID: 12650985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Na(x) Channel: What It Is and What It Does.
    Noda M; Hiyama TY
    Neuroscientist; 2015 Aug; 21(4):399-412. PubMed ID: 24962095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sodium-level-sensitive sodium channel Na(x) is expressed in glial laminate processes in the sensory circumventricular organs.
    Watanabe E; Hiyama TY; Shimizu H; Kodama R; Hayashi N; Miyata S; Yanagawa Y; Obata K; Noda M
    Am J Physiol Regul Integr Comp Physiol; 2006 Mar; 290(3):R568-76. PubMed ID: 16223844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The subfornical organ in sodium appetite: Recent insights.
    Ch'ng SS; Lawrence AJ
    Neuropharmacology; 2019 Aug; 154():107-113. PubMed ID: 30118727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sodium balance, arterial pressure, and the role of the subfornical organ during chronic changes in dietary salt.
    Hendel MD; Collister JP
    Am J Physiol Heart Circ Physiol; 2005 Jul; 289(1):H426-31. PubMed ID: 15734879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of cerebrospinal fluid-contacting nucleus in sodium sensing and sodium appetite.
    Xing D; Wu Y; Li G; Song S; Liu Y; Liu H; Wang X; Fei Y; Zhang C; Li Y; Zhang L
    Physiol Behav; 2015 Aug; 147():291-9. PubMed ID: 25911266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of hydration and subfornical organ lesions in sodium-depletion induced salt appetite.
    Starbuck EM; Lane JR; Fitts DA
    Behav Neurosci; 1997 Feb; 111(1):206-13. PubMed ID: 9109639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local production of angiotensin II in the subfornical organ causes elevated drinking.
    Sakai K; Agassandian K; Morimoto S; Sinnayah P; Cassell MD; Davisson RL; Sigmund CD
    J Clin Invest; 2007 Apr; 117(4):1088-95. PubMed ID: 17404622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of SFO lesions on salt appetite during multiple sodium depletions.
    Ruhf AA; Starbuck EM; Fitts DA
    Physiol Behav; 2001; 74(4-5):629-36. PubMed ID: 11790424
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.