These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
395 related articles for article (PubMed ID: 15496876)
1. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Mimura S; Seki T; Tanaka S; Diffley JF Nature; 2004 Oct; 431(7012):1118-23. PubMed ID: 15496876 [TBL] [Abstract][Full Text] [Related]
2. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Loog M; Morgan DO Nature; 2005 Mar; 434(7029):104-8. PubMed ID: 15744308 [TBL] [Abstract][Full Text] [Related]
3. Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae. Hu F; Gan Y; Aparicio OM Genetics; 2008 Jun; 179(2):863-74. PubMed ID: 18558651 [TBL] [Abstract][Full Text] [Related]
4. Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Calzada A; Sacristán M; Sánchez E; Bueno A Nature; 2001 Jul; 412(6844):355-8. PubMed ID: 11460169 [TBL] [Abstract][Full Text] [Related]
5. Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast. Piatti S; Böhm T; Cocker JH; Diffley JF; Nasmyth K Genes Dev; 1996 Jun; 10(12):1516-31. PubMed ID: 8666235 [TBL] [Abstract][Full Text] [Related]
6. Cytoplasmic Clb2 is required for timely inactivation of the mitotic inhibitor Swe1 and normal bud morphogenesis in Saccharomyces cerevisiae. Hood-DeGrenier JK; Boulton CN; Lyo V Curr Genet; 2007 Jan; 51(1):1-18. PubMed ID: 17033818 [TBL] [Abstract][Full Text] [Related]
7. Differential susceptibility of yeast S and M phase CDK complexes to inhibitory tyrosine phosphorylation. Keaton MA; Bardes ES; Marquitz AR; Freel CD; Zyla TR; Rudolph J; Lew DJ Curr Biol; 2007 Jul; 17(14):1181-9. PubMed ID: 17614281 [TBL] [Abstract][Full Text] [Related]
8. The role and regulation of the preRC component Cdc6 in the initiation of premeiotic DNA replication. Ofir Y; Sagee S; Guttmann-Raviv N; Pnueli L; Kassir Y Mol Biol Cell; 2004 May; 15(5):2230-42. PubMed ID: 15004237 [TBL] [Abstract][Full Text] [Related]
9. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2-7. Nguyen VQ; Co C; Irie K; Li JJ Curr Biol; 2000 Feb; 10(4):195-205. PubMed ID: 10704410 [TBL] [Abstract][Full Text] [Related]
10. Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Elsasser S; Lou F; Wang B; Campbell JL; Jong A Mol Biol Cell; 1996 Nov; 7(11):1723-35. PubMed ID: 8930895 [TBL] [Abstract][Full Text] [Related]
11. G1-phase and B-type cyclins exclude the DNA-replication factor Mcm4 from the nucleus. Labib K; Diffley JF; Kearsey SE Nat Cell Biol; 1999 Nov; 1(7):415-22. PubMed ID: 10559985 [TBL] [Abstract][Full Text] [Related]
12. Cdc14p resets the competency of replication licensing by dephosphorylating multiple initiation proteins during mitotic exit in budding yeast. Zhai Y; Yung PY; Huo L; Liang C J Cell Sci; 2010 Nov; 123(Pt 22):3933-43. PubMed ID: 20980394 [TBL] [Abstract][Full Text] [Related]
13. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Örd M; Venta R; Möll K; Valk E; Loog M Mol Cell; 2019 Jul; 75(1):76-89.e3. PubMed ID: 31101497 [TBL] [Abstract][Full Text] [Related]
14. Cdc6 degradation requires phosphodegron created by GSK-3 and Cdk1 for SCFCdc4 recognition in Saccharomyces cerevisiae. Al-Zain A; Schroeder L; Sheglov A; Ikui AE Mol Biol Cell; 2015 Jul; 26(14):2609-19. PubMed ID: 25995377 [TBL] [Abstract][Full Text] [Related]
15. CDK prevents Mcm2-7 helicase loading by inhibiting Cdt1 interaction with Orc6. Chen S; Bell SP Genes Dev; 2011 Feb; 25(4):363-72. PubMed ID: 21289063 [TBL] [Abstract][Full Text] [Related]
16. Evidence for a Cdc6p-independent mitotic resetting event involving DNA polymerase alpha. Desdouets C; Santocanale C; Drury LS; Perkins G; Foiani M; Plevani P; Diffley JF EMBO J; 1998 Jul; 17(14):4139-46. PubMed ID: 9670028 [TBL] [Abstract][Full Text] [Related]
17. Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. Archambault V; Li CX; Tackett AJ; Wasch R; Chait BT; Rout MP; Cross FR Mol Biol Cell; 2003 Nov; 14(11):4592-604. PubMed ID: 12960422 [TBL] [Abstract][Full Text] [Related]
18. Differential cellular localization among mitotic cyclins from Saccharomyces cerevisiae: a new role for the axial budding protein Bud3 in targeting Clb2 to the mother-bud neck. Bailly E; Cabantous S; Sondaz D; Bernadac A; Simon MN J Cell Sci; 2003 Oct; 116(Pt 20):4119-30. PubMed ID: 12972503 [TBL] [Abstract][Full Text] [Related]
19. Cdc6 is sequentially regulated by PP2A-Cdc55, Cdc14, and Sic1 for origin licensing in Philip J; Örd M; Silva A; Singh S; Diffley JF; Remus D; Loog M; Ikui AE Elife; 2022 Feb; 11():. PubMed ID: 35142288 [TBL] [Abstract][Full Text] [Related]
20. Control of mitotic events by the Cdc42 GTPase, the Clb2 cyclin and a member of the PAK kinase family. Tjandra H; Compton J; Kellogg D Curr Biol; 1998 Sep; 8(18):991-1000. PubMed ID: 9740799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]