These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 15497379)

  • 21. A relationship between Reynolds stresses and viscous dissipation: implications to red cell damage.
    Jones SA
    Ann Biomed Eng; 1995; 23(1):21-8. PubMed ID: 7762879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyethylene glycol additives reduce hemolysis in red blood cell suspensions exposed to mechanical stress.
    Kameneva MV; Repko BM; Krasik EF; Perricelli BC; Borovetz HS
    ASAIO J; 2003; 49(5):537-42. PubMed ID: 14524560
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of static pressure and shear rate on hemolysis of red blood cells.
    Yasuda T; Funakubo A; Miyawaki F; Kawamura T; Higami T; Fukui Y
    ASAIO J; 2001; 47(4):351-3. PubMed ID: 11482485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and Numerical Investigation of an Axial Rotary Blood Pump.
    Schüle CY; Thamsen B; Blümel B; Lommel M; Karakaya T; Paschereit CO; Affeld K; Kertzscher U
    Artif Organs; 2016 Nov; 40(11):E192-E202. PubMed ID: 27087467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Extending the Power-Law Hemolysis Model to Complex Flows.
    Faghih MM; Keith Sharp M
    J Biomech Eng; 2016 Dec; 138(12):. PubMed ID: 27657486
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of Reynolds Shear Stress Level for Hemolysis.
    Jhun CS; Stauffer MA; Reibson JD; Yeager EE; Newswanger RK; Taylor JO; Manning KB; Weiss WJ; Rosenberg G
    ASAIO J; 2018; 64(1):63-69. PubMed ID: 28661910
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A fluid dynamic analysis of a rotary blood pump for design improvement.
    Treichler J; Rosenow SE; Damm G; Naito K; Ohara Y; Mizuguchi K; Makinouchi K; Takatani S; Nosé Y
    Artif Organs; 1993 Sep; 17(9):797-808. PubMed ID: 8240074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.
    Aziz A; Werner BC; Epting KL; Agosti CD; Curtis WR
    Ann Biomed Eng; 2007 Dec; 35(12):2108-20. PubMed ID: 17909969
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the representation of effective stress for computing hemolysis.
    Wu P; Gao Q; Hsu PL
    Biomech Model Mechanobiol; 2019 Jun; 18(3):665-679. PubMed ID: 30604300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Turbulence in blood damage modeling.
    Goubergrits L; Osman J; Mevert R; Kertzscher U; Pöthkow K; Hege HC
    Int J Artif Organs; 2016 Jun; 39(4):160-5. PubMed ID: 27034315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain hardening of red blood cells by accumulated cyclic supraphysiological stress.
    Lee SS; Antaki JF; Kameneva MV; Dobbe JG; Hardeman MR; Ahn KH; Lee SJ
    Artif Organs; 2007 Jan; 31(1):80-6. PubMed ID: 17209965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An energy-dissipation-based power-law formulation for estimating hemolysis.
    Wu P; Groß-Hardt S; Boehning F; Hsu PL
    Biomech Model Mechanobiol; 2020 Apr; 19(2):591-602. PubMed ID: 31612342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theory to predict shear stress on cells in turbulent blood flow.
    Morshed KN; Bark D; Forleo M; Dasi LP
    PLoS One; 2014; 9(8):e105357. PubMed ID: 25171175
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Red Blood Cell Model to Estimate the Hemolysis Fingerprint of Cardiovascular Devices.
    Toninato R; Fadda G; Susin FM
    Artif Organs; 2018 Jan; 42(1):58-67. PubMed ID: 28722138
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human red blood cells deformed under thermal fluid flow.
    Foo JJ; Chan V; Feng ZQ; Liu KK
    Biomed Mater; 2006 Mar; 1(1):1-7. PubMed ID: 18458379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices.
    Grigioni M; Daniele C; D'Avenio G; Barbaro V
    J Biomech; 2002 Dec; 35(12):1613-22. PubMed ID: 12445614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow.
    Quinlan NJ; Dooley PN
    Ann Biomed Eng; 2007 Aug; 35(8):1347-56. PubMed ID: 17458700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shear stress related blood damage in laminar couette flow.
    Paul R; Apel J; Klaus S; Schügner F; Schwindke P; Reul H
    Artif Organs; 2003 Jun; 27(6):517-29. PubMed ID: 12780506
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of Hemolysis in Turbulent Shear Orifice Flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 May; 20(5):553-559. PubMed ID: 28868711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.