These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 15497433)

  • 1. A neural network model of adaptively timed reinforcement learning and hippocampal dynamics.
    Grossberg S; Merrill JW
    Brain Res Cogn Brain Res; 1992 Jun; 1(1):3-38. PubMed ID: 15497433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hippocampus and cerebellum in adaptively timed learning, recognition, and movement.
    Grossberg S; Merrill JW
    J Cogn Neurosci; 1996; 8(3):257-77. PubMed ID: 23968151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural model of normal and abnormal learning and memory consolidation: adaptively timed conditioning, hippocampus, amnesia, neurotrophins, and consciousness.
    Franklin DJ; Grossberg S
    Cogn Affect Behav Neurosci; 2017 Feb; 17(1):24-76. PubMed ID: 27905080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal lesions facilitate instrumental learning with delayed reinforcement but induce impulsive choice in rats.
    Cheung TH; Cardinal RN
    BMC Neurosci; 2005 May; 6():36. PubMed ID: 15892889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampal CA3 NMDA receptors are crucial for adaptive timing of trace eyeblink conditioned response.
    Kishimoto Y; Nakazawa K; Tonegawa S; Kirino Y; Kano M
    J Neurosci; 2006 Feb; 26(5):1562-70. PubMed ID: 16452679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response.
    Fiala JC; Grossberg S; Bullock D
    J Neurosci; 1996 Jun; 16(11):3760-74. PubMed ID: 8642419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of hippocampal manipulations on the classically conditioned nictitating membrane response: simulations by an attentional-associative model.
    Schmajuk NA; Moore JW
    Behav Brain Res; 1989 Mar; 32(2):173-89. PubMed ID: 2923660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From brain synapses to systems for learning and memory: Object recognition, spatial navigation, timed conditioning, and movement control.
    Grossberg S
    Brain Res; 2015 Sep; 1621():270-93. PubMed ID: 25446436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural network approach to hippocampal function in classical conditioning.
    Schmajuk NA; DiCarlo JJ
    Behav Neurosci; 1991 Feb; 105(1):82-110. PubMed ID: 2025396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional basis of associative learning and its relationships with long-term potentiation evoked in the involved neural circuits: Lessons from studies in behaving mammals.
    Gruart A; Leal-Campanario R; López-Ramos JC; Delgado-García JM
    Neurobiol Learn Mem; 2015 Oct; 124():3-18. PubMed ID: 25916668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural dynamics of attentionally modulated Pavlovian conditioning: blocking, interstimulus interval, and secondary reinforcement.
    Grossberg S; Levine DS
    Appl Opt; 1987 Dec; 26(23):5015-30. PubMed ID: 20523481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral and hippocampal electrical changes during operant learning in cats and effects of stimulating two hypothalamic--hippocampal systems.
    Coleman JR; Lindsley DB
    Electroencephalogr Clin Neurophysiol; 1977 Mar; 42(3):309-31. PubMed ID: 65267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of operant learning based on chaotically varying synaptic strength.
    Wei T; Webb B
    Neural Netw; 2018 Dec; 108():114-127. PubMed ID: 30176514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unified-theory-of-reinforcement neural networks do not simulate the blocking effect.
    Calvin NT; J McDowell J
    Behav Processes; 2015 Nov; 120():54-63. PubMed ID: 26319369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
    Wetmore DZ; Mukamel EA; Schnitzer MJ
    J Neurophysiol; 2008 Oct; 100(4):2328-47. PubMed ID: 17671105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients.
    Moustafa AA; Gluck MA
    J Cogn Neurosci; 2011 Jan; 23(1):151-67. PubMed ID: 20044893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aspiration lesions of rat ventral hippocampus disinhibit responding in conditioned suppression or extinction, but spare latent inhibition and the partial reinforcement extinction effect.
    Clark AJ; Feldon J; Rawlins JN
    Neuroscience; 1992 Jun; 48(4):821-9. PubMed ID: 1378574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medial Auditory Thalamus Is Necessary for Expression of Auditory Trace Eyelid Conditioning.
    Hoffmann LC; Zara SJ; DeLord ED; Mauk MD
    J Neurosci; 2018 Oct; 38(41):8831-8844. PubMed ID: 30120206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-dependent involvement of the dorsal hippocampus in trace fear conditioning in mice.
    Misane I; Tovote P; Meyer M; Spiess J; Ogren SO; Stiedl O
    Hippocampus; 2005; 15(4):418-26. PubMed ID: 15669102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.