BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 15497824)

  • 1. Removal of hormones and pharmaceuticals in the Advanced Water Recycling Demonstration Plant in Queensland, Australia.
    Khan SJ; Wintgens T; Sherman P; Zaricky J; Schäfer AI
    Water Sci Technol; 2004; 50(5):15-22. PubMed ID: 15497824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters.
    Kim SD; Cho J; Kim IS; Vanderford BJ; Snyder SA
    Water Res; 2007 Mar; 41(5):1013-21. PubMed ID: 16934312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of endocrine disruptors by tertiary treatments and constructed wetlands in subtropical Australia.
    Chapman H
    Water Sci Technol; 2003; 47(9):151-6. PubMed ID: 12830954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Occurrence of pharmaceutically active and non-steroidal estrogenic compounds in three different wastewater recycling schemes in Australia.
    Al-Rifai JH; Gabelish CL; Schäfer AI
    Chemosphere; 2007 Oct; 69(5):803-15. PubMed ID: 17583770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serial mixed-mode cation- and anion-exchange solid-phase extraction for separation of basic, neutral and acidic pharmaceuticals in wastewater and analysis by high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.
    Lavén M; Alsberg T; Yu Y; Adolfsson-Erici M; Sun H
    J Chromatogr A; 2009 Jan; 1216(1):49-62. PubMed ID: 19054521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can treated municipal wastewater be reused after ozonation and nanofiltration? Results from a pilot study of pharmaceutical removal in Henriksdal WWTP, Sweden.
    Flyborg L; Björlenius B; Persson KM
    Water Sci Technol; 2010; 61(5):1113-20. PubMed ID: 20220232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of nanofiltration for the elimination of steroids from water.
    Weber S; Gallenkemper M; Melin T; Dott W; Hollender J
    Water Sci Technol; 2004; 50(5):9-14. PubMed ID: 15497823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast.
    Gómez MJ; Martínez Bueno MJ; Lacorte S; Fernández-Alba AR; Agüera A
    Chemosphere; 2007 Jan; 66(6):993-1002. PubMed ID: 16962638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment.
    Huerta-Fontela M; Galceran MT; Ventura F
    Water Res; 2011 Jan; 45(3):1432-42. PubMed ID: 21122885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of advanced oxidation processes (AOPs) on the toxicity of a mixture of pharmaceuticals.
    Andreozzi R; Campanella L; Fraysse B; Garric J; Gonnella A; Giudice RL; Marotta R; Pinto G; Pollio A
    Water Sci Technol; 2004; 50(5):23-8. PubMed ID: 15497825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea.
    Behera SK; Kim HW; Oh JE; Park HS
    Sci Total Environ; 2011 Sep; 409(20):4351-60. PubMed ID: 21807398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ozonation: a tool for removal of pharmaceuticals, contrast media and musk fragrances from wastewater?
    Ternes TA; Stüber J; Herrmann N; McDowell D; Ried A; Kampmann M; Teiser B
    Water Res; 2003 Apr; 37(8):1976-82. PubMed ID: 12697241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment.
    Radjenović J; Petrović M; Barceló D
    Water Res; 2009 Feb; 43(3):831-41. PubMed ID: 19091371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds.
    Baumgarten S; Schröder HF; Charwath C; Lange M; Beier S; Pinnekamp J
    Water Sci Technol; 2007; 56(5):1-8. PubMed ID: 17881831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozone and biofiltration as an alternative to reverse osmosis for removing PPCPs and micropollutants from treated wastewater.
    Lee CO; Howe KJ; Thomson BM
    Water Res; 2012 Mar; 46(4):1005-14. PubMed ID: 22202904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant.
    Nakada N; Shinohara H; Murata A; Kiri K; Managaki S; Sato N; Takada H
    Water Res; 2007 Nov; 41(19):4373-82. PubMed ID: 17632207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical monitoring strategy for the assessment of advanced water treatment plant performance.
    Drewes JE; McDonald JA; Trinh T; Storey MV; Khan SJ
    Water Sci Technol; 2011; 63(3):573-9. PubMed ID: 21278482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: impact on receiving river water.
    Grover DP; Zhou JL; Frickers PE; Readman JW
    J Hazard Mater; 2011 Jan; 185(2-3):1005-11. PubMed ID: 21035257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioanalytical tools for the evaluation of organic micropollutants during sewage treatment, water recycling and drinking water generation.
    Macova M; Toze S; Hodgers L; Mueller JF; Bartkow M; Escher BI
    Water Res; 2011 Aug; 45(14):4238-47. PubMed ID: 21704353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficiency, costs and benefits of AOPs for removal of pharmaceuticals from the water cycle.
    Tuerk J; Sayder B; Boergers A; Vitz H; Kiffmeyer TK; Kabasci S
    Water Sci Technol; 2010; 61(4):985-93. PubMed ID: 20182078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.