BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 15498696)

  • 1. Present and future in process control and optimization of osmotic dehydration. From unit operation to innovative combined process: an overview.
    Torreggiani D; Bertolo G
    Adv Food Nutr Res; 2004; 48():173-238. PubMed ID: 15498696
    [No Abstract]   [Full Text] [Related]  

  • 2. Methods to increase the rate of mass transfer during osmotic dehydration of foods.
    Chwastek A
    Acta Sci Pol Technol Aliment; 2014; 13(4):341-350. PubMed ID: 28067476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of osmotic dehydration to improve fruits and vegetables quality during processing.
    Maftoonazad N
    Recent Pat Food Nutr Agric; 2010 Nov; 2(3):233-42. PubMed ID: 20858191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in apple liquid phase concentration throughout equilibrium in osmotic dehydration.
    Barat JM; Barrera C; Frías JM; Fito P
    J Food Sci; 2007 Mar; 72(2):E85-93. PubMed ID: 17995838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.
    Muñiz-Becerá S; Méndez-Lagunas LL; Rodríguez-Ramírez J
    J Food Sci; 2017 Oct; 82(10):2251-2259. PubMed ID: 28877345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Acceleration of osmotic dehydration process through ohmic heating of foods: raspberries (Rubus idaeus)].
    Simpson RR; Jiménez MP; Carevic EG; Grancelli RM
    Arch Latinoam Nutr; 2007 Jun; 57(2):192-5. PubMed ID: 17992985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of spent osmotic solutions for the production of fructooligosaccharides by Aspergillus oryzae N74.
    Ruiz Y; Klotz B; Serrato J; Guio F; Bohórquez J; Sánchez OF
    Food Sci Technol Int; 2014 Jul; 20(5):365-72. PubMed ID: 23744119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. True density and apparent density during the drying process for vegetables and fruits: a review.
    Rodríguez-Ramírez J; Méndez-Lagunas L; López-Ortiz A; Torres SS
    J Food Sci; 2012 Dec; 77(12):R146-54. PubMed ID: 23170871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology.
    Oladejo AO; Ma H
    J Sci Food Agric; 2016 Aug; 96(11):3688-93. PubMed ID: 26621787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent development in osmotic dehydration of fruit and vegetables: a review.
    Chandra S; Kumari D
    Crit Rev Food Sci Nutr; 2015; 55(4):552-61. PubMed ID: 24915357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of thermal treatment on the stability of phenolic compounds and the microbiological quality of sucrose solution following osmotic dehydration of highbush blueberry fruits.
    Kucner A; Papiewska A; Klewicki R; Sójka M; Klewicka E
    Acta Sci Pol Technol Aliment; 2014; 13(1):79-88. PubMed ID: 24724213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling of osmotic solutions in microwave-osmotic dehydration: product quality and potential for creation of a novel product.
    Wray D; Ramaswamy HS
    J Sci Food Agric; 2016 Aug; 96(10):3515-23. PubMed ID: 26593746
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Improved microbiological control over the products of sublimation drying].
    Slovachevskaia EI; Stasiuk SN; Shenderovskaia LM
    Vopr Pitan; 1988; (6):60-2. PubMed ID: 2976554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient changes in food processing. A current review.
    Nesheim RO
    Fed Proc; 1974 Nov; 33(11):2267-9. PubMed ID: 4609808
    [No Abstract]   [Full Text] [Related]  

  • 15. Optimum condition of producing crisp osmotic banana using superheated steam puffing.
    Tabtiang S; Prachayawarakorn S; Soponronnarit S
    J Sci Food Agric; 2017 Mar; 97(4):1244-1251. PubMed ID: 27322686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbiological aspects of thermally processed foods.
    Gaze J
    J Appl Microbiol; 2005; 98(6):1381-6. PubMed ID: 15916650
    [No Abstract]   [Full Text] [Related]  

  • 17. State of polyphenols in the drying process of fruits and vegetables.
    McSweeney M; Seetharaman K
    Crit Rev Food Sci Nutr; 2015; 55(5):660-9. PubMed ID: 24915359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass transfer during osmotic dehydration and its effect on anthocyanin retention of microwave vacuum-dried blackberries.
    Song C; Ma X; Li Z; Wu T; Raghavan GV; Chen H
    J Sci Food Agric; 2020 Jan; 100(1):102-109. PubMed ID: 31436308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contamination of food plants and plant products with bacteria of public health significance.
    Roberts D; Watson GN; Gilbert RJ
    Soc Appl Bacteriol Symp Ser; 1982; (10):169-95. PubMed ID: 6285520
    [No Abstract]   [Full Text] [Related]  

  • 20. [Occurrence of pathogenic microorganisms in frozen fruit and vegetables].
    Maleszewski J; Bachryj F; Borowiak M; Chybowska J; Cieslak E; Czarnowska W; Dziurowicz Z; Frasunkiewicz B; Górecka E; Juchnowicz I; Krezemińska B; Krzemionka R; Lewicka J; Lukawska Z; Maciaszek A; Stelmach W; Zerger S
    Rocz Panstw Zakl Hig; 1976; 27(1):41-5. PubMed ID: 1251112
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.