These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 15498873)

  • 1. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes.
    Zeidler D; Zähringer U; Gerber I; Dubery I; Hartung T; Bors W; Hutzler P; Durner J
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15811-6. PubMed ID: 15498873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct carbohydrate and lipid-based molecular patterns within lipopolysaccharides from Burkholderia cepacia contribute to defense-associated differential gene expression in Arabidopsis thaliana.
    Madala NE; Molinaro A; Dubery IA
    Innate Immun; 2012 Feb; 18(1):140-54. PubMed ID: 21733976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitric oxide-mediated maintenance of redox homeostasis contributes to NPR1-dependent plant innate immunity triggered by lipopolysaccharides.
    Sun A; Nie S; Xing D
    Plant Physiol; 2012 Oct; 160(2):1081-96. PubMed ID: 22926319
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrite as the major source of nitric oxide production by Arabidopsis thaliana in response to Pseudomonas syringae.
    Modolo LV; Augusto O; Almeida IM; Magalhaes JR; Salgado I
    FEBS Lett; 2005 Jul; 579(17):3814-20. PubMed ID: 15978583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein.
    Ma W; Smigel A; Tsai YC; Braam J; Berkowitz GA
    Plant Physiol; 2008 Oct; 148(2):818-28. PubMed ID: 18689446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis.
    Shi H; Chen Y; Tan DX; Reiter RJ; Chan Z; He C
    J Pineal Res; 2015 Aug; 59(1):102-8. PubMed ID: 25960153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Priming for enhanced defence responses by specific inhibition of the Arabidopsis response to coronatine.
    Tsai CH; Singh P; Chen CW; Thomas J; Weber J; Mauch-Mani B; Zimmerli L
    Plant J; 2011 Feb; 65(3):469-79. PubMed ID: 21265899
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous interaction of Arabidopsis thaliana with Bradyrhizobium Sp. strain ORS278 and Pseudomonas syringae pv. tomato DC3000 leads to complex transcriptome changes.
    Cartieaux F; Contesto C; Gallou A; Desbrosses G; Kopka J; Taconnat L; Renou JP; Touraine B
    Mol Plant Microbe Interact; 2008 Feb; 21(2):244-59. PubMed ID: 18184068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Method for Investigating the Pseudomonas syringae-Arabidopsis thaliana Pathosystem Under Various Light Environments.
    Leuchtman DL; Shumate AD; Gassmann W; Liscum E
    Methods Mol Biol; 2019; 1991():107-113. PubMed ID: 31041768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional responses of Arabidopsis thaliana to the bacteria-derived PAMPs harpin and lipopolysaccharide.
    Livaja M; Zeidler D; von Rad U; Durner J
    Immunobiology; 2008; 213(3-4):161-71. PubMed ID: 18406364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pathogen-responsive expression of glycosyltransferase genes UGT73B3 and UGT73B5 is necessary for resistance to Pseudomonas syringae pv tomato in Arabidopsis.
    Langlois-Meurinne M; Gachon CM; Saindrenan P
    Plant Physiol; 2005 Dec; 139(4):1890-901. PubMed ID: 16306146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulatory role of nitric oxide in lipopolysaccharides-triggered plant innate immunity.
    Sun A; Li Z
    Plant Signal Behav; 2013 Jan; 8(1):e22554. PubMed ID: 23221762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deciphering the dual effect of lipopolysaccharides from plant pathogenic Pectobacterium.
    Mohamed KH; Daniel T; Aurélien D; El-Maarouf-Bouteau H; Rafik E; Arbelet-Bonnin D; Biligui B; Florence V; Mustapha EM; François B
    Plant Signal Behav; 2015; 10(3):e1000160. PubMed ID: 25760034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing nitric oxide content in Arabidopsis thaliana by expressing rat neuronal nitric oxide synthase resulted in enhanced stress tolerance.
    Shi HT; Li RJ; Cai W; Liu W; Wang CL; Lu YT
    Plant Cell Physiol; 2012 Feb; 53(2):344-57. PubMed ID: 22186181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Priming in systemic plant immunity.
    Jung HW; Tschaplinski TJ; Wang L; Glazebrook J; Greenberg JT
    Science; 2009 Apr; 324(5923):89-91. PubMed ID: 19342588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NHL25 and NHL3, two NDR1/HIN1-1ike genes in Arabidopsis thaliana with potential role(s) in plant defense.
    Varet A; Parker J; Tornero P; Nass N; Nürnberger T; Dangl JL; Scheel D; Lee J
    Mol Plant Microbe Interact; 2002 Jun; 15(6):608-16. PubMed ID: 12059109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1.
    Kawamura Y; Takenaka S; Hase S; Kubota M; Ichinose Y; Kanayama Y; Nakaho K; Klessig DF; Takahashi H
    Plant Cell Physiol; 2009 May; 50(5):924-34. PubMed ID: 19304739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide does not trigger early programmed cell death events but may contribute to cell-to-cell signaling governing progression of the Arabidopsis hypersensitive response.
    Zhang C; Czymmek KJ; Shapiro AD
    Mol Plant Microbe Interact; 2003 Nov; 16(11):962-72. PubMed ID: 14601664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana.
    Underwood W; Zhang S; He SY
    Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.