These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
469 related articles for article (PubMed ID: 15498950)
1. Metabolic influences of fiber size in aerobic and anaerobic locomotor muscles of the blue crab, Callinectes sapidus. Johnson LK; Dillaman RM; Gay DM; Blum JE; Kinsey ST J Exp Biol; 2004 Nov; 207(Pt 23):4045-56. PubMed ID: 15498950 [TBL] [Abstract][Full Text] [Related]
2. A reaction-diffusion analysis of energetics in large muscle fibers secondarily evolved for aerobic locomotor function. Hardy KM; Locke BR; Da Silva M; Kinsey ST J Exp Biol; 2006 Sep; 209(Pt 18):3610-20. PubMed ID: 16943501 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial distribution and glycogen dynamics suggest diffusion constraints in muscle fibers of the blue crab, Callinectes sapidus. Boyle KL; Dillaman RM; Kinsey ST J Exp Zool A Comp Exp Biol; 2003 May; 297(1):1-16. PubMed ID: 12911109 [TBL] [Abstract][Full Text] [Related]
5. Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii. Thibodeaux LK; Burnett KG; Burnett LE J Exp Biol; 2009 Nov; 212(Pt 21):3428-39. PubMed ID: 19837884 [TBL] [Abstract][Full Text] [Related]
6. Allometric scaling of maximal enzyme activities in the axial musculature of striped bass, Morone saxatilis (Walbaum). Norton SF; Eppley ZA; Sidell BD Physiol Biochem Zool; 2000; 73(6):819-28. PubMed ID: 11121355 [TBL] [Abstract][Full Text] [Related]
7. The influence of oxygen and high-energy phosphate diffusion on metabolic scaling in three species of tail-flipping crustaceans. Jimenez AG; Locke BR; Kinsey ST J Exp Biol; 2008 Oct; 211(Pt 20):3214-25. PubMed ID: 18840655 [TBL] [Abstract][Full Text] [Related]
8. The ontogeny of contractile performance and metabolic capacity in a high-frequency muscle. Moon BR; Tullis A Physiol Biochem Zool; 2006; 79(1):20-30. PubMed ID: 16380925 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of muscle maintenance costs during fiber hypertrophy in the lobster Homarus americanus: are larger muscle fibers cheaper to maintain? Jimenez AG; Dasika SK; Locke BR; Kinsey ST J Exp Biol; 2011 Nov; 214(Pt 21):3688-97. PubMed ID: 21993799 [TBL] [Abstract][Full Text] [Related]
10. A skeletal muscle model of extreme hypertrophic growth reveals the influence of diffusion on cellular design. Hardy KM; Dillaman RM; Locke BR; Kinsey ST Am J Physiol Regul Integr Comp Physiol; 2009 Jun; 296(6):R1855-67. PubMed ID: 19321701 [TBL] [Abstract][Full Text] [Related]
11. Carbonic anhydrase isozyme distribution and characterization in metabolic fiber types of the dorsal levator muscle of the blue crab, Callinectes sapidus. Henry RP; Bilger SM; Moss AG J Exp Zool; 2001 Aug; 290(3):234-46. PubMed ID: 11479903 [TBL] [Abstract][Full Text] [Related]
12. The long and winding road: influences of intracellular metabolite diffusion on cellular organization and metabolism in skeletal muscle. Kinsey ST; Hardy KM; Locke BR J Exp Biol; 2007 Oct; 210(Pt 20):3505-12. PubMed ID: 17921152 [TBL] [Abstract][Full Text] [Related]
13. Slow-tonic muscle fibers and their potential innervation in the turtle, Pseudemys (Trachemys) scripta elegans. Callister RJ; Pierce PA; McDonagh JC; Stuart DG J Morphol; 2005 Apr; 264(1):62-74. PubMed ID: 15732049 [TBL] [Abstract][Full Text] [Related]
14. Scaling of gill metabolic potential as a function of salinity in the euryhaline crab, Callinectes sapidus rathbun. Kinsey ST; Buda E; Nordeen J Physiol Biochem Zool; 2003; 76(1):105-14. PubMed ID: 12695991 [TBL] [Abstract][Full Text] [Related]
15. Skeletal muscle fiber types in the ghost crab, Ocypode quadrata: implications for running performance. Perry MJ; Tait J; Hu J; White SC; Medler S J Exp Biol; 2009 Mar; 212(Pt 5):673-83. PubMed ID: 19218519 [TBL] [Abstract][Full Text] [Related]
16. Ontogenetic effects on aerobic and anaerobic metabolism during jumping in the American locust, Schistocerca americana. Kirkton SD; Niska JA; Harrison JF J Exp Biol; 2005 Aug; 208(Pt 15):3003-12. PubMed ID: 16043604 [TBL] [Abstract][Full Text] [Related]
17. Proteomic analysis of slow- and fast-twitch skeletal muscles. Okumura N; Hashida-Okumura A; Kita K; Matsubae M; Matsubara T; Takao T; Nagai K Proteomics; 2005 Jul; 5(11):2896-906. PubMed ID: 15981298 [TBL] [Abstract][Full Text] [Related]
18. The ontogeny of aerobic and diving capacity in the skeletal muscles of Weddell seals. Kanatous SB; Hawke TJ; Trumble SJ; Pearson LE; Watson RR; Garry DJ; Williams TM; Davis RW J Exp Biol; 2008 Aug; 211(Pt 16):2559-65. PubMed ID: 18689409 [TBL] [Abstract][Full Text] [Related]
19. Fiber-type distribution of the perivertebral musculature in Ambystoma. Schilling N; Deban SM J Morphol; 2010 Feb; 271(2):200-14. PubMed ID: 19708065 [TBL] [Abstract][Full Text] [Related]
20. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals? Dawson TJ; Mifsud B; Raad MC; Webster KN J Exp Biol; 2004 Jul; 207(Pt 16):2811-21. PubMed ID: 15235010 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]