These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 15499011)

  • 21. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Fish-Eating Enantiornithine Bird from the Early Cretaceous of China Provides Evidence of Modern Avian Digestive Features.
    Wang M; Zhou Z; Sullivan C
    Curr Biol; 2016 May; 26(9):1170-6. PubMed ID: 27133872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The distribution of integumentary structures in a feathered dinosaur.
    Ji Q; Norell MA; Gao KQ; Ji SA; Ren D
    Nature; 2001 Apr; 410(6832):1084-8. PubMed ID: 11323669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A bizarre Early Cretaceous enantiornithine bird with unique crural feathers and an ornithuromorph plough-shaped pygostyle.
    Wang M; O'Connor JK; Pan Y; Zhou Z
    Nat Commun; 2017 Jan; 8():14141. PubMed ID: 28139644
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of embryonic development of some bird species with different patterns of postnatal growth.
    Blom J; Lilja C
    Zoology (Jena); 2005; 108(2):81-95. PubMed ID: 16351957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flight aerodynamics in enantiornithines: Information from a new Chinese Early Cretaceous bird.
    Liu D; Chiappe LM; Serrano F; Habib M; Zhang Y; Meng Q
    PLoS One; 2017; 12(10):e0184637. PubMed ID: 29020077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Avian thyroid development and adaptive plasticity.
    McNabb FM
    Gen Comp Endocrinol; 2006 Jun; 147(2):93-101. PubMed ID: 16457824
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feathered dinosaurs from China and the evolution of major avian characters.
    Xu X
    Integr Zool; 2006 Mar; 1(1):4-11. PubMed ID: 21395983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Embryogeny of oxygen consumption in 13 altricial and precocial birds.
    Prinzinger R; Schmidt M; Dietz V
    Respir Physiol; 1995 Jun; 100(3):283-7. PubMed ID: 7481118
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fossil brain from the Cretaceous of European Russia and avian sensory evolution.
    Kurochkin EN; Dyke GJ; Saveliev SV; Pervushov EM; Popov EV
    Biol Lett; 2007 Jun; 3(3):309-13. PubMed ID: 17426009
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Embryonic development of endothermy.
    Tzschentke B; Rumpf M
    Respir Physiol Neurobiol; 2011 Aug; 178(1):97-107. PubMed ID: 21693200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Allometric relationships between embryonic heart rate and fresh egg mass in birds.
    Tazawa H; Pearson JT; Komoro T; Ar A
    J Exp Biol; 2001 Jan; 204(Pt 1):165-74. PubMed ID: 11104720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identity of the avian wing digits: problems resolved and unsolved.
    Young RL; Bever GS; Wang Z; Wagner GP
    Dev Dyn; 2011 May; 240(5):1042-53. PubMed ID: 21412936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution.
    Slack KE; Jones CM; Ando T; Harrison GL; Fordyce RE; Arnason U; Penny D
    Mol Biol Evol; 2006 Jun; 23(6):1144-55. PubMed ID: 16533822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Embryonic oxygen consumption and organ growth in the wedge-tailed shearwater.
    Zhang Q; Whittow GC
    Growth Dev Aging; 1992; 56(4):205-14. PubMed ID: 1487360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mid-Cretaceous enantiornithine foot and tail feather preserved in Burmese amber.
    Xing L; McKellar RC; O'Connor JK; Niu K; Mai H
    Sci Rep; 2019 Oct; 9(1):15513. PubMed ID: 31664115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Palaeobiology of the Cretaceous bird Confuciusornis: a comment on Peters & Peters (2009).
    Chiappe LM; Marugán-Lobón J; Chinsamy A
    Biol Lett; 2010 Aug; 6(4):529-30; discussion 531-2. PubMed ID: 20236961
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of egg size on Double-crested Cormorant (Phalacrocorax auritus) egg composition and hatchling phenotype.
    Dzialowski EM; Reed WL; Sotherland PR
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Feb; 152(2):262-7. PubMed ID: 19000773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Mesozoic bird from Gondwana preserving feathers.
    de Souza Carvalho I; Novas FE; Agnolín FL; Isasi MP; Freitas FI; Andrade JA
    Nat Commun; 2015 Jun; 6():7141. PubMed ID: 26035285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Definitive fossil evidence for the extant avian radiation in the Cretaceous.
    Clarke JA; Tambussi CP; Noriega JI; Erickson GM; Ketcham RA
    Nature; 2005 Jan; 433(7023):305-8. PubMed ID: 15662422
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.