These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
354 related articles for article (PubMed ID: 15499025)
81. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Brainard AM; Miller AJ; Martens JR; England SK Am J Physiol Cell Physiol; 2005 Jul; 289(1):C49-57. PubMed ID: 15703204 [TBL] [Abstract][Full Text] [Related]
82. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. Adebiyi A; Narayanan D; Jaggar JH J Biol Chem; 2011 Feb; 286(6):4341-8. PubMed ID: 21098487 [TBL] [Abstract][Full Text] [Related]
83. Caveolae Link Ca Hashad AM; Harraz OF; Brett SE; Romero M; Kassmann M; Puglisi JL; Wilson SM; Gollasch M; Welsh DG Arterioscler Thromb Vasc Biol; 2018 Oct; 38(10):2371-2381. PubMed ID: 30354206 [TBL] [Abstract][Full Text] [Related]
84. Action of imipramine on activated ATP-sensitive K(+) channels in interstitial cells of Cajal from murine small intestine. Choi S; Park CG; Kim MY; Lim GH; Kim JH; Yeum CH; Yoon PJ; So I; Kim KW; Jun JY Life Sci; 2006 Apr; 78(20):2322-8. PubMed ID: 16266721 [TBL] [Abstract][Full Text] [Related]
85. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels. Purves GI; Kamishima T; Davies LM; Quayle JM; Dart C J Physiol; 2009 Jul; 587(Pt 14):3639-50. PubMed ID: 19491242 [TBL] [Abstract][Full Text] [Related]
87. Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid. Ye D; Zhou W; Lee HC Am J Physiol Heart Circ Physiol; 2005 Jan; 288(1):H358-64. PubMed ID: 15331373 [TBL] [Abstract][Full Text] [Related]
88. The ATP-sensitive potassium channel subunit, Kir6.1, in vascular smooth muscle plays a major role in blood pressure control. Aziz Q; Thomas AM; Gomes J; Ang R; Sones WR; Li Y; Ng KE; Gee L; Tinker A Hypertension; 2014 Sep; 64(3):523-9. PubMed ID: 24914196 [TBL] [Abstract][Full Text] [Related]
89. Enhancement of the ATP-sensitive K+ current by extracellular ATP in rat ventricular myocytes. Involvement of adenylyl cyclase-induced subsarcolemmal ATP depletion. Babenko A; Vassort G Circ Res; 1997 Apr; 80(4):589-600. PubMed ID: 9118491 [TBL] [Abstract][Full Text] [Related]
90. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Sones WR; Davis AJ; Leblanc N; Greenwood IA Cardiovasc Res; 2010 Aug; 87(3):476-84. PubMed ID: 20172862 [TBL] [Abstract][Full Text] [Related]
91. Caveolae targeting and regulation of large conductance Ca(2+)-activated K+ channels in vascular endothelial cells. Wang XL; Ye D; Peterson TE; Cao S; Shah VH; Katusic ZS; Sieck GC; Lee HC J Biol Chem; 2005 Mar; 280(12):11656-64. PubMed ID: 15665381 [TBL] [Abstract][Full Text] [Related]
92. Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. Head BP; Patel HH; Roth DM; Murray F; Swaney JS; Niesman IR; Farquhar MG; Insel PA J Biol Chem; 2006 Sep; 281(36):26391-9. PubMed ID: 16818493 [TBL] [Abstract][Full Text] [Related]
93. Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Kawabe J; Okumura S; Lee MC; Sadoshima J; Ishikawa Y Am J Physiol Heart Circ Physiol; 2004 May; 286(5):H1845-52. PubMed ID: 15072971 [TBL] [Abstract][Full Text] [Related]
94. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling. Allen JA; Yu JZ; Dave RH; Bhatnagar A; Roth BL; Rasenick MM Mol Pharmacol; 2009 Nov; 76(5):1082-93. PubMed ID: 19696145 [TBL] [Abstract][Full Text] [Related]
95. Localization of adenylyl cyclase isoforms and G protein-coupled receptors in vascular smooth muscle cells: expression in caveolin-rich and noncaveolin domains. Ostrom RS; Liu X; Head BP; Gregorian C; Seasholtz TM; Insel PA Mol Pharmacol; 2002 Nov; 62(5):983-92. PubMed ID: 12391260 [TBL] [Abstract][Full Text] [Related]
96. ATP-sensitive K+-channel subunits on the mitochondria and endoplasmic reticulum of rat cardiomyocytes. Zhou M; Tanaka O; Sekiguchi M; He HJ; Yasuoka Y; Itoh H; Kawahara K; Abe H J Histochem Cytochem; 2005 Dec; 53(12):1491-500. PubMed ID: 15983113 [TBL] [Abstract][Full Text] [Related]
97. Vasoconstrictors inhibit ATP-sensitive K+ channels in arterial smooth muscle through protein kinase C. Bonev AD; Nelson MT J Gen Physiol; 1996 Oct; 108(4):315-23. PubMed ID: 8894979 [TBL] [Abstract][Full Text] [Related]
98. Alteration of ATP-sensitive K+ channels in rabbit aortic smooth muscle during left ventricular hypertrophy. Park WS; Hong DH; Son YK; Kim MH; Jeong SH; Kim HK; Kim N; Han J Am J Physiol Cell Physiol; 2012 Jul; 303(2):C170-8. PubMed ID: 22572849 [TBL] [Abstract][Full Text] [Related]
99. Caveolin-3 negatively regulates endocytic recycling of cardiac K Huo JY; Feng YL; Chen YT; Yang B; Zhi YT; Wang HJ; Yang HQ Am J Physiol Cell Physiol; 2023 Oct; 325(4):C1106-C1118. PubMed ID: 37746698 [TBL] [Abstract][Full Text] [Related]
100. Inhibitory effect of caffeine on pacemaker activity in the oviduct is mediated by cAMP-regulated conductances. Dixon R; Hwang S; Britton F; Sanders K; Ward S Br J Pharmacol; 2011 Jun; 163(4):745-54. PubMed ID: 21615388 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]