BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 15499411)

  • 1. Genome-wide analysis of Kluyveromyces lactis in wild-type and rag2 mutant strains.
    Becerra M; Tarrío N; González-Siso MI; Cerdán ME
    Genome; 2004 Oct; 47(5):970-8. PubMed ID: 15499411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis.
    Goffrini P; Wésolowski-Louvel M; Ferrero I
    Mol Gen Genet; 1991 Sep; 228(3):401-9. PubMed ID: 1896011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reoxidation of the NADPH produced by the pentose phosphate pathway is necessary for the utilization of glucose by Kluyveromyces lactis rag2 mutants.
    González Siso MI; Freire Picos MA; Cerdán ME
    FEBS Lett; 1996 May; 387(1):7-10. PubMed ID: 8654569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the first fungal NADP-GAPDH from Kluyveromyces lactis.
    Verho R; Richard P; Jonson PH; Sundqvist L; Londesborough J; Penttilä M
    Biochemistry; 2002 Nov; 41(46):13833-8. PubMed ID: 12427047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach to the hypoxic and oxidative stress responses in Kluyveromyces lactis by analysis of mRNA levels.
    Blanco M; Núñez L; Tarrío N; Canto E; Becerra M; González-Siso MI; Cerdán ME
    FEMS Yeast Res; 2007 Aug; 7(5):702-14. PubMed ID: 17425672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of glutathione reductase in the interplay between oxidative stress response and turnover of cytosolic NADPH in Kluyveromyces lactis.
    Tarrío N; García-Leiro A; Cerdán ME; González-Siso MI
    FEMS Yeast Res; 2008 Jun; 8(4):597-606. PubMed ID: 18318708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. KlGcr1 controls glucose-6-phosphate dehydrogenase activity and responses to H2O2, cadmium and arsenate in Kluyveromyces lactis.
    Lamas-Maceiras M; Rodríguez-Belmonte E; Becerra M; González-Siso MI; Cerdán ME
    Fungal Genet Biol; 2015 Sep; 82():95-103. PubMed ID: 26164373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglucose isomerase.
    Wésolowski-Louvel M; Goffrini P; Ferrero I
    Nucleic Acids Res; 1988 Sep; 16(17):8714. PubMed ID: 3419932
    [No Abstract]   [Full Text] [Related]  

  • 10. The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant.
    Boles E; Lehnert W; Zimmermann FK
    Eur J Biochem; 1993 Oct; 217(1):469-77. PubMed ID: 7901008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nuclear genes encoding the internal (KlNDI1) and external (KlNDE1) alternative NAD(P)H:ubiquinone oxidoreductases of mitochondria from Kluyveromyces lactis.
    Tarrío N; Díaz Prado S; Cerdán ME; González Siso MI
    Biochim Biophys Acta; 2005; 1707(2-3):199-210. PubMed ID: 15863098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae.
    Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT
    Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of pyruvate metabolism in chemostat cultures of Kluyveromyces lactis CBS 2359.
    Zeeman AM; Kuyper M; Pronk JT; van Dijken JP; Steensma HY
    Yeast; 2000 May; 16(7):611-20. PubMed ID: 10806423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of the oxidative stress response in Kluyveromyces lactis and effect of glutathione reductase depletion.
    García-Leiro A; Cerdán ME; González-Siso MI
    J Proteome Res; 2010 May; 9(5):2358-76. PubMed ID: 20349988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Why does Kluyveromyces lactis not grow under anaerobic conditions? Comparison of essential anaerobic genes of Saccharomyces cerevisiae with the Kluyveromyces lactis genome.
    Snoek IS; Steensma HY
    FEMS Yeast Res; 2006 May; 6(3):393-403. PubMed ID: 16630279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deletion of the succinate dehydrogenase gene KlSDH1 in Kluyveromyces lactis does not lead to respiratory deficiency.
    Saliola M; Bartoccioni PC; De Maria I; Lodi T; Falcone C
    Eukaryot Cell; 2004 Jun; 3(3):589-97. PubMed ID: 15189981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 'petite-negative' yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity.
    Bianchi MM; Tizzani L; Destruelle M; Frontali L; Wésolowski-Louvel M
    Mol Microbiol; 1996 Jan; 19(1):27-36. PubMed ID: 8821934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and Physiological Characterization of Fructose-1,6-Bisphosphate Aldolase and Glyceraldehyde-3-Phosphate Dehydrogenase in the Crabtree-Negative Yeast
    Rodicio R; Schmitz HP; Heinisch JJ
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of PGI1 and ZWF1 in thermotolerant yeast Kluyveromyces marxianus.
    Zhang B; Ren L; Zeng S; Zhang S; Xu D; Zeng X; Li F
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7991-8006. PubMed ID: 32776206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.