BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 15500698)

  • 1. Mapping the brain's orchestration during speech comprehension: task-specific facilitation of regional synchrony in neural networks.
    Härle M; Rockstroh BS; Keil A; Wienbruch C; Elbert TR
    BMC Neurosci; 2004 Oct; 5():40. PubMed ID: 15500698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of phonemic restoration for speech comprehension revealed by magnetoencephalography.
    Sunami K; Ishii A; Takano S; Yamamoto H; Sakashita T; Tanaka M; Watanabe Y; Yamane H
    Brain Res; 2013 Nov; 1537():164-73. PubMed ID: 24055105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for rapid auditory perception as the foundation of speech processing: a sparse temporal sampling fMRI study.
    Zaehle T; Wüstenberg T; Meyer M; Jäncke L
    Eur J Neurosci; 2004 Nov; 20(9):2447-56. PubMed ID: 15525285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural source dynamics of brain responses to continuous stimuli: Speech processing from acoustics to comprehension.
    Brodbeck C; Presacco A; Simon JZ
    Neuroimage; 2018 May; 172():162-174. PubMed ID: 29366698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sign and speech: amodal commonality in left hemisphere dominance for comprehension of sentences.
    Sakai KL; Tatsuno Y; Suzuki K; Kimura H; Ichida Y
    Brain; 2005 Jun; 128(Pt 6):1407-17. PubMed ID: 15728651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined eye tracking and fMRI reveals neural basis of linguistic predictions during sentence comprehension.
    Bonhage CE; Mueller JL; Friederici AD; Fiebach CJ
    Cortex; 2015 Jul; 68():33-47. PubMed ID: 26003489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disentangling the brain networks supporting affective speech comprehension.
    Hervé PY; Razafimandimby A; Vigneau M; Mazoyer B; Tzourio-Mazoyer N
    Neuroimage; 2012 Jul; 61(4):1255-67. PubMed ID: 22507230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory neuromagnetic activity induced by language and non-language stimuli.
    Eulitz C; Maess B; Pantev C; Friederici AD; Feige B; Elbert T
    Brain Res Cogn Brain Res; 1996 Sep; 4(2):121-32. PubMed ID: 8883925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural networks for sentence comprehension and production: An ALE-based meta-analysis of neuroimaging studies.
    Walenski M; Europa E; Caplan D; Thompson CK
    Hum Brain Mapp; 2019 Jun; 40(8):2275-2304. PubMed ID: 30689268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural network of speech monitoring overlaps with overt speech production and comprehension networks: a sequential spatial and temporal ICA study.
    van de Ven V; Esposito F; Christoffels IK
    Neuroimage; 2009 Oct; 47(4):1982-91. PubMed ID: 19481159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. θ-Band and β-Band Neural Activity Reflects Independent Syllable Tracking and Comprehension of Time-Compressed Speech.
    Pefkou M; Arnal LH; Fontolan L; Giraud AL
    J Neurosci; 2017 Aug; 37(33):7930-7938. PubMed ID: 28729443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralization of auditory language functions: a dynamic dual pathway model.
    Friederici AD; Alter K
    Brain Lang; 2004 May; 89(2):267-76. PubMed ID: 15068909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcranial alternating current stimulation with speech envelopes modulates speech comprehension.
    Wilsch A; Neuling T; Obleser J; Herrmann CS
    Neuroimage; 2018 May; 172():766-774. PubMed ID: 29355765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation in the anterior left auditory cortex associated with phonological analysis of speech input: localization of the phonological mismatch negativity response with MEG.
    Kujala A; Alho K; Service E; Ilmoniemi RJ; Connolly JF
    Brain Res Cogn Brain Res; 2004 Sep; 21(1):106-13. PubMed ID: 15325418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale-Free Amplitude Modulation of Neuronal Oscillations Tracks Comprehension of Accelerated Speech.
    Borges AFT; Giraud AL; Mansvelder HD; Linkenkaer-Hansen K
    J Neurosci; 2018 Jan; 38(3):710-722. PubMed ID: 29217685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left hemisphere lateralization for lexical and acoustic pitch processing in Cantonese speakers as revealed by mismatch negativity.
    Gu F; Zhang C; Hu A; Zhao G
    Neuroimage; 2013 Dec; 83():637-45. PubMed ID: 23856710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sex-dependent modulation of activity in the neural networks engaged during emotional speech comprehension.
    Beaucousin V; Zago L; Hervé PY; Strelnikov K; Crivello F; Mazoyer B; Tzourio-Mazoyer N
    Brain Res; 2011 May; 1390():108-17. PubMed ID: 21439268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain networks subserving the extraction of sentence information and its encoding to memory.
    Hasson U; Nusbaum HC; Small SL
    Cereb Cortex; 2007 Dec; 17(12):2899-913. PubMed ID: 17372276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of language-specific brain activity using magnetoencephalography.
    Simos PG; Breier JI; Zouridakis G; Papanicolaou AC
    J Clin Exp Neuropsychol; 1998 Oct; 20(5):706-22. PubMed ID: 10079046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain Network Connectivity During Language Comprehension: Interacting Linguistic and Perceptual Subsystems.
    Fonteneau E; Bozic M; Marslen-Wilson WD
    Cereb Cortex; 2015 Oct; 25(10):3962-76. PubMed ID: 25452574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.