BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 15501612)

  • 1. Estimation of interindividual variation in oxidative metabolism of dichloromethane in human volunteers.
    Sweeney LM; Kirman CR; Morgott DA; Gargas ML
    Toxicol Lett; 2004 Dec; 154(3):201-16. PubMed ID: 15501612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of two different metabolic hypotheses for dichloromethane toxicity using physiologically based pharmacokinetic modeling for in vivo inhalation gas uptake data exposure in female B6C3F1 mice.
    Evans MV; Caldwell JC
    Toxicol Appl Pharmacol; 2010 May; 244(3):280-90. PubMed ID: 20153349
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas uptake studies of deuterium isotope effects on dichloromethane metabolism in female B6C3F1 mice in vivo.
    Andersen ME; Clewell HJ; Mahle DA; Gearhart JM
    Toxicol Appl Pharmacol; 1994 Sep; 128(1):158-65. PubMed ID: 8079349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of a single administration of benzene, toluene or m-xylene on carboxyhaemoglobin elevation and metabolism of dichloromethane in rats.
    Kim SK; Kim YC
    J Appl Toxicol; 1996; 16(5):437-44. PubMed ID: 8889796
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of long-term ethanol pretreatment on the metabolism of dichloromethane to carbon monoxide in rats.
    Wirkner K; Damme B; Poelchen W; Pankow D
    Toxicol Appl Pharmacol; 1997 Mar; 143(1):83-8. PubMed ID: 9073595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the vial equilibration technique for determination of metabolic rate constants for dichloromethane.
    Kim C; Manning RO; Brown RP; Bruckner JV
    Toxicol Appl Pharmacol; 1996 Aug; 139(2):243-51. PubMed ID: 8806840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the relevance of rodent data on chemical interactions for health risk assessment purposes: a case study with dichloromethane-toluene mixture.
    Pelekis M; Krishnan K
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):79-86. PubMed ID: 9056503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiologically based pharmacokinetic modeling with dichloromethane, its metabolite, carbon monoxide, and blood carboxyhemoglobin in rats and humans.
    Andersen ME; Clewell HJ; Gargas ML; MacNaughton MG; Reitz RH; Nolan RJ; McKenna MJ
    Toxicol Appl Pharmacol; 1991 Mar; 108(1):14-27. PubMed ID: 1900959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling interchild differences in pharmacokinetics on the basis of subject-specific data on physiology and hepatic CYP2E1 levels: a case study with toluene.
    Nong A; McCarver DG; Hines RN; Krishnan K
    Toxicol Appl Pharmacol; 2006 Jul; 214(1):78-87. PubMed ID: 16464483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of glutathione transferase theta polymorphism on the risk estimates of dichloromethane to humans.
    El-Masri HA; Bell DA; Portier CJ
    Toxicol Appl Pharmacol; 1999 Aug; 158(3):221-30. PubMed ID: 10438655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane.
    Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2001 Jul; 174(2):99-112. PubMed ID: 11446825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revised assessment of cancer risk to dichloromethane II. Application of probabilistic methods to cancer risk determinations.
    David RM; Clewell HJ; Gentry PR; Covington TR; Morgott DA; Marino DJ
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):55-65. PubMed ID: 16439044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure.
    Boerleider RZ; Olie JD; van Eijkeren JC; Bos PM; Hof BG; de Vries I; Bessems JG; Meulenbelt J; Hunault CC
    Toxicol Lett; 2015 Jan; 232(1):21-7. PubMed ID: 25455448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-protein cross-links (DPX) and cell proliferation in B6C3F1 mice but not Syrian golden hamsters exposed to dichloromethane: pharmacokinetics and risk assessment with DPX as dosimeter.
    Casanova M; Conolly RB; Heck H d'A
    Fundam Appl Toxicol; 1996 May; 31(1):103-16. PubMed ID: 8998946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of exercise and intersubject variability on dose estimates for dichloromethane derived from a physiologically based pharmacokinetic model.
    Dankovic DA; Bailer AJ
    Fundam Appl Toxicol; 1994 Jan; 22(1):20-5. PubMed ID: 8125209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the uptake, metabolism and excretion of dichloromethane by man.
    Peterson JE
    Am Ind Hyg Assoc J; 1978 Jan; 39(1):41-7. PubMed ID: 629207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.