These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 15501789)
1. Effects of vlsE complementation on the infectivity of Borrelia burgdorferi lacking the linear plasmid lp28-1. Lawrenz MB; Wooten RM; Norris SJ Infect Immun; 2004 Nov; 72(11):6577-85. PubMed ID: 15501789 [TBL] [Abstract][Full Text] [Related]
2. Investigating the potential role of non-vls genes on linear plasmid 28-1 in virulence and persistence by Borrelia burgdorferi. Magunda PR; Bankhead T BMC Microbiol; 2016 Aug; 16(1):180. PubMed ID: 27502325 [TBL] [Abstract][Full Text] [Related]
3. Detailed analysis of sequence changes occurring during vlsE antigenic variation in the mouse model of Borrelia burgdorferi infection. Coutte L; Botkin DJ; Gao L; Norris SJ PLoS Pathog; 2009 Feb; 5(2):e1000293. PubMed ID: 19214205 [TBL] [Abstract][Full Text] [Related]
4. Central role of the Holliday junction helicase RuvAB in vlsE recombination and infectivity of Borrelia burgdorferi. Lin T; Gao L; Edmondson DG; Jacobs MB; Philipp MT; Norris SJ PLoS Pathog; 2009 Dec; 5(12):e1000679. PubMed ID: 19997622 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the vls antigenic variation loci of the Lyme disease spirochaetes Borrelia garinii Ip90 and Borrelia afzelii ACAI. Wang D; Botkin DJ; Norris SJ Mol Microbiol; 2003 Mar; 47(5):1407-17. PubMed ID: 12603744 [TBL] [Abstract][Full Text] [Related]
6. vls Antigenic Variation Systems of Lyme Disease Borrelia: Eluding Host Immunity through both Random, Segmental Gene Conversion and Framework Heterogeneity. Norris SJ Microbiol Spectr; 2014 Dec; 2(6):. PubMed ID: 26104445 [TBL] [Abstract][Full Text] [Related]
7. The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Labandeira-Rey M; Seshu J; Skare JT Infect Immun; 2003 Aug; 71(8):4608-13. PubMed ID: 12874340 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and in vivo induction of genetic variation of vlsE in Borrelia burgdorferi. Zhang JR; Norris SJ Infect Immun; 1998 Aug; 66(8):3689-97. PubMed ID: 9673250 [TBL] [Abstract][Full Text] [Related]
9. Investigation of the genes involved in antigenic switching at the vlsE locus in Borrelia burgdorferi: an essential role for the RuvAB branch migrase. Dresser AR; Hardy PO; Chaconas G PLoS Pathog; 2009 Dec; 5(12):e1000680. PubMed ID: 19997508 [TBL] [Abstract][Full Text] [Related]
10. Identification of potential virulence determinants by Himar1 transposition of infectious Borrelia burgdorferi B31. Botkin DJ; Abbott AN; Stewart PE; Rosa PA; Kawabata H; Watanabe H; Norris SJ Infect Immun; 2006 Dec; 74(12):6690-9. PubMed ID: 17015459 [TBL] [Abstract][Full Text] [Related]
11. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Labandeira-Rey M; Skare JT Infect Immun; 2001 Jan; 69(1):446-55. PubMed ID: 11119536 [TBL] [Abstract][Full Text] [Related]
12. New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional Batool M; Hillhouse AE; Ionov Y; Kochan KJ; Mohebbi F; Stoica G; Threadgill DW; Zelikovsky A; Waghela SD; Wiener DJ; Rogovskyy AS Infect Immun; 2019 Jul; 87(7):. PubMed ID: 30988058 [No Abstract] [Full Text] [Related]
13. Role of Borrelia burgdorferi linear plasmid 25 in infection of Ixodes scapularis ticks. Strother KO; de Silva A J Bacteriol; 2005 Aug; 187(16):5776-81. PubMed ID: 16077125 [TBL] [Abstract][Full Text] [Related]
14. A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Purser JE; Lawrenz MB; Caimano MJ; Howell JK; Radolf JD; Norris SJ Mol Microbiol; 2003 May; 48(3):753-64. PubMed ID: 12694619 [TBL] [Abstract][Full Text] [Related]
15. A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice: investigation of the role of plasmid topology and the long inverted repeat. Castellanos M; Verhey TB; Chaconas G Mol Microbiol; 2018 Sep; 109(5):710-721. PubMed ID: 29995993 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of the Importance of VlsE Antigenic Variation for the Enzootic Cycle of Borrelia burgdorferi. Rogovskyy AS; Casselli T; Tourand Y; Jones CR; Owen JP; Mason KL; Scoles GA; Bankhead T PLoS One; 2015; 10(4):e0124268. PubMed ID: 25893989 [TBL] [Abstract][Full Text] [Related]
17. Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi. Verhey TB; Castellanos M; Chaconas G Mol Microbiol; 2019 Mar; 111(3):750-763. PubMed ID: 30580501 [TBL] [Abstract][Full Text] [Related]
18. Evidence for the contribution of point mutations to vlsE variation and for apparent constraints on the net accumulation of sequence changes in vlsE during infection with Lyme disease spirochetes. Sung SY; McDowell JV; Marconi RT J Bacteriol; 2001 Oct; 183(20):5855-61. PubMed ID: 11566983 [TBL] [Abstract][Full Text] [Related]
19. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Bankhead T; Chaconas G Mol Microbiol; 2007 Sep; 65(6):1547-58. PubMed ID: 17714442 [TBL] [Abstract][Full Text] [Related]
20. Identification of Surface Epitopes Associated with Protection against Highly Immune-Evasive VlsE-Expressing Lyme Disease Spirochetes. Batool M; Caoili SEC; Dangott LJ; Gerasimov E; Ionov Y; Piontkivska H; Zelikovsky A; Waghela SD; Rogovskyy AS Infect Immun; 2018 Aug; 86(8):. PubMed ID: 29866906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]