These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 15501819)
1. The role of an activating peptide in protease-mediated suicide of Escherichia coli K12. Copeland NA; Kleanthous C J Biol Chem; 2005 Jan; 280(1):112-7. PubMed ID: 15501819 [TBL] [Abstract][Full Text] [Related]
2. Regulation of translation of the head protein of T4 bacteriophage by specific binding of EF-Tu to a leader sequence. Snyder L; Blight S; Auchtung J J Mol Biol; 2003 Nov; 334(3):349-61. PubMed ID: 14623179 [TBL] [Abstract][Full Text] [Related]
3. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Georgiou T; Yu YN; Ekunwe S; Buttner MJ; Zuurmond A; Kraal B; Kleanthous C; Snyder L Proc Natl Acad Sci U S A; 1998 Mar; 95(6):2891-5. PubMed ID: 9501186 [TBL] [Abstract][Full Text] [Related]
4. Identification of essential residues within Lit, a cell death peptidase of Escherichia coli K-12. Copeland NA; Bingham R; Georgiou T; Cooper P; Kleanthous C Biochemistry; 2004 Jun; 43(24):7948-53. PubMed ID: 15196039 [TBL] [Abstract][Full Text] [Related]
5. The major head protein of bacteriophage T4 binds specifically to elongation factor Tu. Bingham R; Ekunwe SI; Falk S; Snyder L; Kleanthous C J Biol Chem; 2000 Jul; 275(30):23219-26. PubMed ID: 10801848 [TBL] [Abstract][Full Text] [Related]
6. Translation elongation factor Tu cleaved by a phage-exclusion system. Yu YT; Snyder L Proc Natl Acad Sci U S A; 1994 Jan; 91(2):802-6. PubMed ID: 8290603 [TBL] [Abstract][Full Text] [Related]
7. Effects of mutagenesis of residue 221 on the properties of bacterial and mitochondrial elongation factor EF-Tu. Hunter SE; Spremulli LL Biochim Biophys Acta; 2004 Jun; 1699(1-2):173-82. PubMed ID: 15158725 [TBL] [Abstract][Full Text] [Related]
8. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA. Navratil T; Spremulli LL Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005 [TBL] [Abstract][Full Text] [Related]
9. Translational regulation by modifications of the elongation factor Tu. Kraal B; Lippmann C; Kleanthous C Folia Microbiol (Praha); 1999; 44(2):131-41. PubMed ID: 10588048 [TBL] [Abstract][Full Text] [Related]
10. Limited proteolysis and amino acid replacements in the effector region of Thermus thermophilus elongation factor Tu. Zeidler W; Schirmer NK; Egle C; Ribeiro S; Kreutzer R; Sprinzl M Eur J Biochem; 1996 Jul; 239(2):265-71. PubMed ID: 8706729 [TBL] [Abstract][Full Text] [Related]
11. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity. Hunter SE; Spremulli LL Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329 [TBL] [Abstract][Full Text] [Related]
12. Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors. Jones AM; Garza-Sánchez F; So J; Hayes CS; Low DA Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1951-E1957. PubMed ID: 28223500 [TBL] [Abstract][Full Text] [Related]
13. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs. Hunter SE; Spremulli LL RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748 [TBL] [Abstract][Full Text] [Related]
14. A site in the T4 bacteriophage major head protein gene that can promote the inhibition of all translation in Escherichia coli. Bergsland KJ; Kao C; Yu YT; Gulati R; Snyder L J Mol Biol; 1990 Jun; 213(3):477-94. PubMed ID: 2191141 [TBL] [Abstract][Full Text] [Related]
15. Peptidase activity of the Escherichia coli Hsp31 chaperone. Malki A; Caldas T; Abdallah J; Kern R; Eckey V; Kim SJ; Cha SS; Mori H; Richarme G J Biol Chem; 2005 Apr; 280(15):14420-6. PubMed ID: 15550391 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. Zeidler W; Egle C; Ribeiro S; Wagner A; Katunin V; Kreutzer R; Rodnina M; Wintermeyer W; Sprinzl M Eur J Biochem; 1995 May; 229(3):596-604. PubMed ID: 7758452 [TBL] [Abstract][Full Text] [Related]
17. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Snyder L Mol Microbiol; 1995 Feb; 15(3):415-20. PubMed ID: 7540246 [TBL] [Abstract][Full Text] [Related]
18. Bacteriophage T4 gol site: sequence analysis and effects of the site on plasmid transformation. Champness WC; Snyder L J Virol; 1984 May; 50(2):555-62. PubMed ID: 6323755 [TBL] [Abstract][Full Text] [Related]
19. Site-directed mutagenesis of elongation factor Tu. The functional and structural role of residue Cys81. Anborgh PH; Parmeggiani A; Jonák J Eur J Biochem; 1992 Sep; 208(2):251-7. PubMed ID: 1521523 [TBL] [Abstract][Full Text] [Related]
20. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]