These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. Uhde-Stone C; Liu J; Zinn KE; Allan DL; Vance CP Plant J; 2005 Dec; 44(5):840-53. PubMed ID: 16297074 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Johnson JF; Vance CP; Allan DL Plant Physiol; 1996 Sep; 112(1):31-41. PubMed ID: 8819319 [TBL] [Abstract][Full Text] [Related]
5. Reciprocal control of anaplerotic phosphoenolpyruvate carboxylase by in vivo monoubiquitination and phosphorylation in developing proteoid roots of phosphate-deficient harsh hakea. Shane MW; Fedosejevs ET; Plaxton WC Plant Physiol; 2013 Apr; 161(4):1634-44. PubMed ID: 23407057 [TBL] [Abstract][Full Text] [Related]
6. The regulatory network of cluster-root function and development in phosphate-deficient white lupin (Lupinus albus) identified by transcriptome sequencing. Wang Z; Straub D; Yang H; Kania A; Shen J; Ludewig U; Neumann G Physiol Plant; 2014 Jul; 151(3):323-38. PubMed ID: 24635386 [TBL] [Abstract][Full Text] [Related]
7. Light-dependent activation of phosphoenolpyruvate carboxylase by reversible phosphorylation in cluster roots of white lupin plants: diurnal control in response to photosynthate supply. Shane MW; Feil R; Lunn JE; Plaxton WC Ann Bot; 2016 Oct; 118(4):637-643. PubMed ID: 27063365 [TBL] [Abstract][Full Text] [Related]
8. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Cheng L; Bucciarelli B; Liu J; Zinn K; Miller S; Patton-Vogt J; Allan D; Shen J; Vance CP Plant Physiol; 2011 Jul; 156(3):1131-48. PubMed ID: 21464471 [TBL] [Abstract][Full Text] [Related]
9. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Yan F; Zhu Y; Müller C; Zörb C; Schubert S Plant Physiol; 2002 May; 129(1):50-63. PubMed ID: 12011337 [TBL] [Abstract][Full Text] [Related]
10. Metabolic changes associated with cluster root development in white lupin (Lupinus albus L.): relationship between organic acid excretion, sucrose metabolism and energy status. Massonneau A; Langlade N; Léon S; Smutny J; Vogt E; Neumann G; Martinoia E Planta; 2001 Aug; 213(4):534-42. PubMed ID: 11556785 [TBL] [Abstract][Full Text] [Related]
11. Phosphorus Stress-Induced Proteoid Roots Show Altered Metabolism in Lupinus albus. Johnson JF; Allan DL; Vance CP Plant Physiol; 1994 Feb; 104(2):657-665. PubMed ID: 12232116 [TBL] [Abstract][Full Text] [Related]
12. A re-assessment of sucrose signaling involved in cluster-root formation and function in phosphate-deficient white lupin (Lupinus albus). Wang Z; Shen J; Ludewig U; Neumann G Physiol Plant; 2015 Jul; 154(3):407-19. PubMed ID: 25412792 [TBL] [Abstract][Full Text] [Related]
13. Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Fukayama H; Tamai T; Taniguchi Y; Sullivan S; Miyao M; Nimmo HG Plant J; 2006 Jul; 47(2):258-68. PubMed ID: 16762031 [TBL] [Abstract][Full Text] [Related]
14. A link between citrate and proton release by proteoid roots of white lupin (Lupinus albus L.) grown under phosphorus-deficient conditions? Zhu Y; Yan F; Zörb C; Schubert S Plant Cell Physiol; 2005 Jun; 46(6):892-901. PubMed ID: 15821025 [TBL] [Abstract][Full Text] [Related]
15. Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Liu J; Samac DA; Bucciarelli B; Allan DL; Vance CP Plant J; 2005 Jan; 41(2):257-68. PubMed ID: 15634202 [TBL] [Abstract][Full Text] [Related]
16. Nylon filter arrays reveal differential gene expression in proteoid roots of white lupin in response to phosphorus deficiency. Uhde-Stone C; Zinn KE; Ramirez-Yáñez M; Li A; Vance CP; Allan DL Plant Physiol; 2003 Mar; 131(3):1064-79. PubMed ID: 12644659 [TBL] [Abstract][Full Text] [Related]
17. Characterization and expression analysis of genes encoding phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxylase kinase of Lotus japonicus, a model legume. Nakagawa T; Izumi T; Banba M; Umehara Y; Kouchi H; Izui K; Hata S Mol Plant Microbe Interact; 2003 Apr; 16(4):281-8. PubMed ID: 12744456 [TBL] [Abstract][Full Text] [Related]
18. Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions. Feria AB; Bosch N; Sánchez A; Nieto-Ingelmo AI; de la Osa C; Echevarría C; García-Mauriño S; Monreal JA Planta; 2016 Oct; 244(4):901-13. PubMed ID: 27306451 [TBL] [Abstract][Full Text] [Related]
19. Characterization and expression analysis of the yellow lupin (Lupinus luteus L.) gene coding for nodule specific proline-rich protein. Karłowski WM; Strózycki PM; Legocki AB Acta Biochim Pol; 2000; 47(2):371-83. PubMed ID: 11051202 [TBL] [Abstract][Full Text] [Related]
20. Purification and characterization of phosphoenolpyruvate carboxylase from Brassica napus (rapeseed) suspension cell cultures: implications for phosphoenolpyruvate carboxylase regulation during phosphate starvation, and the integration of glycolysis with nitrogen assimilation. Moraes TF; Plaxton WC Eur J Biochem; 2000 Jul; 267(14):4465-76. PubMed ID: 10880970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]