BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 15501943)

  • 1. Quantitative imaging of lymphocyte membrane protein reorganization and signaling.
    Kasson PM; Huppa JB; Krogsgaard M; Davis MM; Brunger AT
    Biophys J; 2005 Jan; 88(1):579-89. PubMed ID: 15501943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering).
    Owen DM; Williamson D; Magenau A; Gaus K
    Methods Enzymol; 2012; 504():221-35. PubMed ID: 22264537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging.
    Lukeš T; Glatzová D; Kvíčalová Z; Levet F; Benda A; Letschert S; Sauer M; Brdička T; Lasser T; Cebecauer M
    Nat Commun; 2017 Nov; 8(1):1731. PubMed ID: 29170394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation.
    Lee JH; Katakai T; Hara T; Gonda H; Sugai M; Shimizu A
    J Cell Biol; 2004 Oct; 167(2):327-37. PubMed ID: 15504914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-resolution multicolor imaging of dynamic signaling complexes in T cells stimulated by planar substrates.
    Bunnell SC; Barr VA; Fuller CL; Samelson LE
    Sci STKE; 2003 Apr; 2003(177):PL8. PubMed ID: 12684528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PALM imaging and cluster analysis of protein heterogeneity at the cell surface.
    Owen DM; Rentero C; Rossy J; Magenau A; Williamson D; Rodriguez M; Gaus K
    J Biophotonics; 2010 Jul; 3(7):446-54. PubMed ID: 20148419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hybrid machine-learning approach for segmentation of protein localization data.
    Kasson PM; Huppa JB; Davis MM; Brunger AT
    Bioinformatics; 2005 Oct; 21(19):3778-86. PubMed ID: 16091410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative and qualitative analysis of plant membrane traffic using fluorescent proteins.
    Samalova M; Fricker M; Moore I
    Methods Cell Biol; 2008; 85():353-80. PubMed ID: 18155470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costimulation and endogenous MHC ligands contribute to T cell recognition.
    Wülfing C; Sumen C; Sjaastad MD; Wu LC; Dustin ML; Davis MM
    Nat Immunol; 2002 Jan; 3(1):42-7. PubMed ID: 11731799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EBV attachment stimulates FHOS/FHOD1 redistribution and co-aggregation with CD21: formin interactions with the cytoplasmic domain of human CD21.
    Gill MB; Roecklein-Canfield J; Sage DR; Zambela-Soediono M; Longtine N; Uknis M; Fingeroth JD
    J Cell Sci; 2004 Jun; 117(Pt 13):2709-20. PubMed ID: 15138285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single cell imaging of PI3K activity and glucose transporter insertion into the plasma membrane by dual color evanescent wave microscopy.
    Tengholm A; Teruel MN; Meyer T
    Sci STKE; 2003 Feb; 2003(169):PL4. PubMed ID: 12582202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the mobility of signaling molecules in lymphocytes using fluorescence photobleaching techniques.
    Tanimura N; Nagafuku M; Liddicoat DR; Hamaoka T; Kosugi A
    Sci STKE; 2003 Jun; 2003(185):pl10. PubMed ID: 12783982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Lck recruitment to the T-cell receptor cluster as studied by single-molecule-fluorescence video imaging.
    Ike H; Kosugi A; Kato A; Iino R; Hirano H; Fujiwara T; Ritchie K; Kusumi A
    Chemphyschem; 2003 Jun; 4(6):620-6. PubMed ID: 12836486
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantification and its applications in fluorescent microscopy imaging.
    Hamilton N
    Traffic; 2009 Aug; 10(8):951-61. PubMed ID: 19500318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. N-terminal negatively charged residues in CD3varepsilon chains as a phylogenetically conserved trait potentially yielding isoforms with different isoelectric points: analysis of human CD3varepsilon chains.
    Bello R; Feito MJ; Ojeda G; Portolés P; Rojo JM
    Immunol Lett; 2009 Sep; 126(1-2):8-15. PubMed ID: 19616027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative image analysis tool to study the plasma membrane localization of proteins and cortical actin in neuroendocrine cells.
    Kurps J; Broeke JH; Cijsouw T; Kompatscher A; van Weering JR; de Wit H
    J Neurosci Methods; 2014 Oct; 236():1-10. PubMed ID: 25109903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-cell analysis of gene expression by fluorescence microscopy.
    Miyashiro T; Goulian M
    Methods Enzymol; 2007; 423():458-75. PubMed ID: 17609146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ background estimation in quantitative fluorescence imaging.
    Chen TW; Lin BJ; Brunner E; Schild D
    Biophys J; 2006 Apr; 90(7):2534-47. PubMed ID: 16387783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying signaling-induced reorientation of T cell receptors during immunological synapse formation.
    Moss WC; Irvine DJ; Davis MM; Krummel MF
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):15024-9. PubMed ID: 12415110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformable modeling for improved calculation of molecular velocities from single-particle tracking.
    Kasson PM; Davis MM; Brunger AT
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():208-11. PubMed ID: 16447978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.