BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 1550213)

  • 1. Spontaneous and propagated calcium release in isolated cardiac myocytes viewed by confocal microscopy.
    Williams DA; Delbridge LM; Cody SH; Harris PJ; Morgan TO
    Am J Physiol; 1992 Mar; 262(3 Pt 1):C731-42. PubMed ID: 1550213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spontaneous calcium waves without contraction in cardiac myocytes.
    López JR; Jovanovic A; Terzic A
    Biochem Biophys Res Commun; 1995 Sep; 214(3):781-7. PubMed ID: 7575544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonlinear propagation of spherical calcium waves in rat cardiac myocytes.
    Wussling MH; Salz H
    Biophys J; 1996 Mar; 70(3):1144-53. PubMed ID: 8785274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ 'sparks' and waves in intact ventricular muscle resolved by confocal imaging.
    Wier WG; ter Keurs HE; Marban E; Gao WD; Balke CW
    Circ Res; 1997 Oct; 81(4):462-9. PubMed ID: 9314826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in spontaneous subcellular calcium release in guinea-pig ileum smooth muscle cells.
    Gordienko DV; Bolton TB; Cannell MB
    J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):707-20. PubMed ID: 9508832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative intracellular calcium imaging with laser-scanning confocal microscopy.
    Williams DA
    Cell Calcium; 1990 Oct; 11(9):589-97. PubMed ID: 2285927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes.
    Lukyanenko V; Subramanian S; Gyorke I; Wiesner TF; Gyorke S
    J Physiol; 1999 Jul; 518(Pt 1):173-86. PubMed ID: 10373699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Digital-imaging microscopy analysis of calcium release from sarcoplasmic reticulum in single rat cardiac myocytes.
    Grouselle M; Stuyvers B; Bonoron-Adele S; Besse P; Georgescauld D
    Pflugers Arch; 1991 Mar; 418(1-2):109-19. PubMed ID: 2041717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of excitation-contraction coupling into ventricular myocytes.
    Cheng H; Cannell MB; Lederer WJ
    Pflugers Arch; 1994 Oct; 428(3-4):415-7. PubMed ID: 7816564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of Ca2+ wave properties in cardiomyocytes: implications for the mechanism of autocatalytic Ca2+ release in wave propagation.
    Engel J; Sowerby AJ; Finch SA; Fechner M; Stier A
    Biophys J; 1995 Jan; 68(1):40-5. PubMed ID: 7711265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic propagation of Ca2+ waves in isolated cardiomyocytes.
    Engel J; Fechner M; Sowerby AJ; Finch SA; Stier A
    Biophys J; 1994 Jun; 66(6):1756-62. PubMed ID: 8075316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible inhibition of gap junctional intercellular communication, synchronous contraction, and synchronism of intracellular Ca2+ fluctuation in cultured neonatal rat cardiac myocytes by heptanol.
    Kimura H; Oyamada Y; Ohshika H; Mori M; Oyamada M
    Exp Cell Res; 1995 Oct; 220(2):348-56. PubMed ID: 7556443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Ca2+ release in cultured neonatal rat cardiac myocytes. Insight from subcellular release patterns revealed by confocal microscopy.
    Lipp P; Niggli E
    Circ Res; 1994 May; 74(5):979-90. PubMed ID: 8156645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium sparks and [Ca2+]i waves in cardiac myocytes.
    Cheng H; Lederer MR; Lederer WJ; Cannell MB
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C148-59. PubMed ID: 8772440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of the effects of ATP and tetracaine on spontaneous Ca(2+) release from rat permeabilised cardiac myocytes.
    Smith GL; O'Neill SC
    J Physiol; 2001 Jul; 534(Pt 1):37-47. PubMed ID: 11432990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcellular properties of triggered Ca2+ waves in isolated citrate-loaded guinea-pig atrial myocytes characterized by ratiometric confocal microscopy.
    Lipp P; Hüser J; Pott L; Niggli E
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):599-610. PubMed ID: 9003547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of planar and spiral Ca2+ waves in isolated cardiac myocytes.
    Ishida H; Genka C; Hirota Y; Nakazawa H; Barry WH
    Biophys J; 1999 Oct; 77(4):2114-22. PubMed ID: 10512831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of mitochondria in calcium regulation of spontaneously contracting cardiac muscle cells.
    Bowser DN; Minamikawa T; Nagley P; Williams DA
    Biophys J; 1998 Oct; 75(4):2004-14. PubMed ID: 9746542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ visualization of spontaneous calcium waves within perfused whole rat heart by confocal imaging.
    Minamikawa T; Cody SH; Williams DA
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H236-43. PubMed ID: 9038943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrasarcomere [Ca2+] gradients and their spatio-temporal relation to Ca2+ sparks in rat cardiomyocytes.
    Tanaka H; Sekine T; Kawanishi T; Nakamura R; Shigenobu K
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):145-52. PubMed ID: 9490830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.