These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 15502276)

  • 1. Recovery of gait and other motor functions after stroke: novel physical and pharmacological treatment strategies.
    Hesse S
    Restor Neurol Neurosci; 2004; 22(3-5):359-69. PubMed ID: 15502276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gait rehabilitation machines based on programmable footplates.
    Schmidt H; Werner C; Bernhardt R; Hesse S; Krüger J
    J Neuroeng Rehabil; 2007 Feb; 4():2. PubMed ID: 17291335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poststroke motor dysfunction and spasticity: novel pharmacological and physical treatment strategies.
    Hesse S; Werner C
    CNS Drugs; 2003; 17(15):1093-107. PubMed ID: 14661987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin.
    Hesse S; Schmidt H; Werner C
    J Rehabil Res Dev; 2006; 43(5):671-8. PubMed ID: 17123207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treadmill training with partial body weight support and an electromechanical gait trainer for restoration of gait in subacute stroke patients: a randomized crossover study.
    Werner C; Von Frankenberg S; Treig T; Konrad M; Hesse S
    Stroke; 2002 Dec; 33(12):2895-901. PubMed ID: 12468788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of botulinum toxin injections on gait control in spastic stroke patients presenting with a stiff-knee gait.
    Bleyenheuft C; Cockx S; Caty G; Stoquart G; Lejeune T; Detrembleur C
    Gait Posture; 2009 Aug; 30(2):168-72. PubMed ID: 19442523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper and lower extremity robotic devices for rehabilitation and for studying motor control.
    Hesse S; Schmidt H; Werner C; Bardeleben A
    Curr Opin Neurol; 2003 Dec; 16(6):705-10. PubMed ID: 14624080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connecting research to the needs of patients and clinicians.
    Hesse S; Werner C
    Brain Res Bull; 2009 Jan; 78(1):26-34. PubMed ID: 18601984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved walking ability and reduced therapeutic stress with an electromechanical gait device.
    Freivogel S; Schmalohr D; Mehrholz J
    J Rehabil Med; 2009 Sep; 41(9):734-9. PubMed ID: 19774307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study of randomized clinical controlled trial of gait training in subacute stroke patients with partial body-weight support electromechanical gait trainer and functional electrical stimulation: six-month follow-up.
    Ng MF; Tong RK; Li LS
    Stroke; 2008 Jan; 39(1):154-60. PubMed ID: 18006861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of loading the unaffected limb for one session of locomotor training on laboratory measures of gait in stroke.
    Regnaux JP; Pradon D; Roche N; Robertson J; Bussel B; Dobkin B
    Clin Biomech (Bristol, Avon); 2008 Jul; 23(6):762-8. PubMed ID: 18325646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An electromechanical gait trainer for restoration of gait in hemiparetic stroke patients: preliminary results.
    Hesse S; Werner C; Uhlenbrock D; von Frankenberg S; Bardeleben A; Brandl-Hesse B
    Neurorehabil Neural Repair; 2001; 15(1):39-50. PubMed ID: 11527278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Evidence-based methods in motor rehabilitation after stroke].
    Liepert J
    Fortschr Neurol Psychiatr; 2012 Jul; 80(7):388-93. PubMed ID: 22760510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait deviations associated with post-stroke hemiparesis: improvement during treadmill walking using weight support, speed, support stiffness, and handrail hold.
    Chen G; Patten C; Kothari DH; Zajac FE
    Gait Posture; 2005 Aug; 22(1):57-62. PubMed ID: 15996593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients.
    Hesse S; Waldner A; Tomelleri C
    J Neuroeng Rehabil; 2010 Jun; 7():30. PubMed ID: 20584307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of simultaneous botulinum toxin injections into several muscles on impairment, activity, participation, and quality of life among stroke patients presenting with a stiff knee gait.
    Caty GD; Detrembleur C; Bleyenheuft C; Deltombe T; Lejeune TM
    Stroke; 2008 Oct; 39(10):2803-8. PubMed ID: 18635841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial.
    Platz T; Kim IH; Engel U; Pinkowski C; Eickhof C; Kutzner M
    Restor Neurol Neurosci; 2005; 23(5-6):271-80. PubMed ID: 16477089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Motor imagery for gait rehabilitation in post-stroke hemiparesis.
    Dickstein R; Dunsky A; Marcovitz E
    Phys Ther; 2004 Dec; 84(12):1167-77. PubMed ID: 15563257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke.
    Ng SS; Hui-Chan CW
    Stroke; 2007 Nov; 38(11):2953-9. PubMed ID: 17901383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.