These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 15503435)

  • 1. Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses.
    Stieglitz T
    J Nanosci Nanotechnol; 2004 May; 4(5):496-503. PubMed ID: 15503435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implantable biomedical microsystems for neural prostheses.
    Stieglitz T; Schuettler M; Koch KP
    IEEE Eng Med Biol Mag; 2005; 24(5):58-65. PubMed ID: 16248118
    [No Abstract]   [Full Text] [Related]  

  • 3. Silicon microsystems for neuroscience and neural prostheses.
    Wise KD
    IEEE Eng Med Biol Mag; 2005; 24(5):22-9. PubMed ID: 16248114
    [No Abstract]   [Full Text] [Related]  

  • 4. Neural prostheses in clinical applications--trends from precision mechanics towards biomedical microsystems in neurological rehabilitation.
    Stieglitz T; Schuettler M; Koch KP
    Biomed Tech (Berl); 2004 Apr; 49(4):72-7. PubMed ID: 15171585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural prostheses and biomedical microsystems in neurological rehabilitation.
    Koch KP
    Acta Neurochir Suppl; 2007; 97(Pt 1):427-34. PubMed ID: 17691406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Implantable microsystems for monitoring and neural rehabilitation, part I.
    Stieglitz T
    Med Device Technol; 2001 Dec; 12(10):16-8, 20-1. PubMed ID: 15966139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An optically powered single-channel stimulation implant as test system for chronic biocompatibility and biostability of miniaturized retinal vision prostheses.
    Schanze T; Hesse L; Lau C; Greve N; Haberer W; Kammer S; Doerge T; Rentzos A; Stieglitz T
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):983-92. PubMed ID: 17554818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microelectronic retinal prosthesis: III. a new method for fabrication of high-density hermetic feedthroughs.
    Suaning GJ; Lavoie P; Forrester J; Armitage T; Lovell NH
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1638-41. PubMed ID: 17946914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural prostheses in clinical practice: biomedical microsystems in neurological rehabilitation.
    Stieglitz T
    Acta Neurochir Suppl; 2007; 97(Pt 1):411-8. PubMed ID: 17691404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review paper: surface modification for bioimplants: the role of laser surface engineering.
    Kurella A; Dahotre NB
    J Biomater Appl; 2005 Jul; 20(1):5-50. PubMed ID: 15972362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation as therapy for neurological disorder.
    Testerman RL; Rise MT; Stypulkowski PH
    IEEE Eng Med Biol Mag; 2006; 25(5):74-8. PubMed ID: 17020202
    [No Abstract]   [Full Text] [Related]  

  • 12. Emerging technologies. Implantable neurostimulation devices.
    Panescu D
    IEEE Eng Med Biol Mag; 2008; 27(5):100-5, 113. PubMed ID: 18799397
    [No Abstract]   [Full Text] [Related]  

  • 13. A reconnectable multiway implantable connector.
    Rushton DN; Tromans AM; Donaldson Nde N
    Med Eng Phys; 2002 Dec; 24(10):691-4. PubMed ID: 12460728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of materials biocompatibility for functional electrical stimulation applications.
    Plenk H
    Artif Organs; 2011 Mar; 35(3):237-41. PubMed ID: 21401666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method and technical equipment for an acute human trial to evaluate retinal implant technology.
    Hornig R; Laube T; Walter P; Velikay-Parel M; Bornfeld N; Feucht M; Akguel H; Rössler G; Alteheld N; Lütke Notarp D; Wyatt J; Richard G
    J Neural Eng; 2005 Mar; 2(1):S129-34. PubMed ID: 15876648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural prostheses for vision: designing a functional interface with retinal neurons.
    Hetling JR; Baig-Silva MS
    Neurol Res; 2004 Jan; 26(1):21-34. PubMed ID: 14977054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach towards a minimal invasive retina implant.
    Gerding H
    J Neural Eng; 2007 Mar; 4(1):S30-7. PubMed ID: 17325414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design criteria of neuron/electrode interface. The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility.
    Raffa V; Pensabene V; Menciassi A; Dario P
    Biomed Microdevices; 2007 Jun; 9(3):371-83. PubMed ID: 17235683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new means of transcutaneous coupling for neural prostheses.
    Gan LS; Prochazka A; Bornes TD; Denington AA; Chan KM
    IEEE Trans Biomed Eng; 2007 Mar; 54(3):509-17. PubMed ID: 17355064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intraocular silicone implant to treat chronic ocular hypotony-preliminary feasibility data.
    Bayoudh W; Frentz M; Carstesen D; Dittrich B; Reismann C; Schrage NF; Walter P; Weinberger AW
    Graefes Arch Clin Exp Ophthalmol; 2016 Nov; 254(11):2131-2139. PubMed ID: 27165132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.