These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 15503464)

  • 1. Microparticulate release systems based on natural origin materials.
    Silva GA; Costa FJ; Neves NM; Reis RL
    Adv Exp Med Biol; 2004; 553():283-300. PubMed ID: 15503464
    [No Abstract]   [Full Text] [Related]  

  • 2. Injectable microparticle-gel system for prolonged and localized lidocaine release. I. In vitro characterization.
    Chen PC; Park YJ; Chang LC; Kohane DS; Bartlett RH; Langer R; Yang VC
    J Biomed Mater Res A; 2004 Sep; 70(3):412-9. PubMed ID: 15293314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and evaluation of novel bioactive composite starch/bioactive glass microparticles.
    Silva GA; Costa FJ; Coutinho OP; Radin S; Ducheyne P; Reis RL
    J Biomed Mater Res A; 2004 Sep; 70(3):442-9. PubMed ID: 15293318
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The double porogen approach as a new technique for the fabrication of interconnected poly(L-lactic acid) and starch based biodegradable scaffolds.
    Ghosh S; Viana JC; Reis RL; Mano JF
    J Mater Sci Mater Med; 2007 Feb; 18(2):185-93. PubMed ID: 17323149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum.
    Kohane DS; Tse JY; Yeo Y; Padera R; Shubina M; Langer R
    J Biomed Mater Res A; 2006 May; 77(2):351-61. PubMed ID: 16425240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
    Montjovent MO; Mark S; Mathieu L; Scaletta C; Scherberich A; Delabarde C; Zambelli PY; Bourban PE; Applegate LA; Pioletti DP
    Bone; 2008 Mar; 42(3):554-64. PubMed ID: 18178142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and biodegradation of polyester and polyfumarate based-scaffolds for bone tissue engineering.
    Cortizo MS; Molinuevo MS; Cortizo AM
    J Tissue Eng Regen Med; 2008 Jan; 2(1):33-42. PubMed ID: 18273918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characterization of photopolymerizable PLGA blends.
    Baroli B
    Adv Exp Med Biol; 2006; 585():183-96. PubMed ID: 17120785
    [No Abstract]   [Full Text] [Related]  

  • 9. Determining the protein drug release characteristics and cell adhesion to a PLLA or PLGA biodegradable polymer membrane.
    Burns SA; Hard R; Hicks WL; Bright FV; Cohan D; Sigurdson L; Gardella JA
    J Biomed Mater Res A; 2010 Jul; 94(1):27-37. PubMed ID: 20091703
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method.
    Gong Y; Zhou Q; Gao C; Shen J
    Acta Biomater; 2007 Jul; 3(4):531-40. PubMed ID: 17350355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering.
    Huang W; Shi X; Ren L; Du C; Wang Y
    Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams.
    Guo G; Ma Q; Zhao B; Zhang D
    Ultrason Sonochem; 2013 Jan; 20(1):137-43. PubMed ID: 22742903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing biodegradation of PLA and PLA-g-AA/starch films using a phosphate-solubilizing bacillus species.
    Wu CS
    Macromol Biosci; 2008 Jun; 8(6):560-7. PubMed ID: 18322910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.
    Lv Q; Nair L; Laurencin CT
    J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.
    Gross KA; Rodríguez-Lorenzo LM
    Biomaterials; 2004 Sep; 25(20):4955-62. PubMed ID: 15109856
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Injectable microparticle-gel system for prolonged and localized lidocaine release. II. In vivo anesthetic effects.
    Chen PC; Kohane DS; Park YJ; Bartlett RH; Langer R; Yang VC
    J Biomed Mater Res A; 2004 Sep; 70(3):459-66. PubMed ID: 15293320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsphere-based bioresorbable structures loaded with proteins for tissue regeneration applications.
    Zilberman M; Shraga I
    J Biomed Mater Res A; 2006 Nov; 79(2):370-9. PubMed ID: 16883585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [In vitro biocompatibility and degradation of nacre/polylactic acid composite artificial bone].
    Liu JB; Chen JT; Jin DD; Quan Y; Fan WW
    Di Yi Jun Yi Da Xue Xue Bao; 2003 Feb; 23(2):130-2, 137. PubMed ID: 12581960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfabrication method of a biodegradable polymer chip for a controlled release system.
    Ito Y; Hasuda H; Morimatsu M; Takagi N; Hirai Y
    J Biomater Sci Polym Ed; 2005; 16(8):949-55. PubMed ID: 16128230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.