These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1550356)

  • 1. Catabolism of camphor in tissue cultures and leaf disks of common sage (Salvia officinalis).
    Funk C; Koepp AE; Croteau R
    Arch Biochem Biophys; 1992 Apr; 294(1):306-13. PubMed ID: 1550356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).
    Funk C; Croteau R
    Plant Physiol; 1993 Apr; 101(4):1231-1237. PubMed ID: 12231778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism of monoterpenes: lactonization of (+)-camphor and conversion of the corresponding hydroxy acid to the glucoside-glucose ester in sage (Salvia officinalis).
    Croteau R; El-Bialy H; El-Hindawi S
    Arch Biochem Biophys; 1984 Feb; 228(2):667-80. PubMed ID: 6546488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of Monoterpenes in Cell Cultures of Common Sage (Salvia officinalis) : Biochemical Rationale for the Lack of Monoterpene Accumulation.
    Falk KL; Gershenzon J; Croteau R
    Plant Physiol; 1990 Aug; 93(4):1559-67. PubMed ID: 16667656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolism of Monoterpenes : Metabolic Fate of (+)-Camphor in Sage (Salvia officinalis).
    Croteau R; El-Bialy H; Dehal SS
    Plant Physiol; 1987 Jul; 84(3):643-8. PubMed ID: 16665495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of monoterpenes: demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves.
    Karp F; Harris JL; Croteau R
    Arch Biochem Biophys; 1987 Jul; 256(1):179-93. PubMed ID: 3111374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of gibberellin and daminozide on the expression of terpene synthases and on monoterpenes in common sage (Salvia officinalis).
    Schmiderer C; Grausgruber-Gröger S; Grassi P; Steinborn R; Novak J
    J Plant Physiol; 2010 Jul; 167(10):779-86. PubMed ID: 20163890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of 1,8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts.
    Ehrnhöfer-Ressler MM; Fricke K; Pignitter M; Walker JM; Walker J; Rychlik M; Somoza V
    J Agric Food Chem; 2013 Apr; 61(14):3451-9. PubMed ID: 23488631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae).
    Grausgruber-Gröger S; Schmiderer C; Steinborn R; Novak J
    J Plant Physiol; 2012 Mar; 169(4):353-9. PubMed ID: 22196947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic synthesis of camphor from neryl pyrophosphate by a soluble preparation from sage (Salvia officinalis).
    Croteau R; Karp F
    Biochem Biophys Res Commun; 1976 Sep; 72(2):440-7. PubMed ID: 10906
    [No Abstract]   [Full Text] [Related]  

  • 11. Relationship of Camphor Biosynthesis to Leaf Development in Sage (Salvia officinalis).
    Croteau R; Felton M; Karp F; Kjonaas R
    Plant Physiol; 1981 Apr; 67(4):820-4. PubMed ID: 16661761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereochemistry and deuterium isotope effects in camphor hydroxylation by the cytochrome P450cam monoxygenase system.
    Gelb MH; Heimbrook DC; Mälkönen P; Sligar SG
    Biochemistry; 1982 Jan; 21(2):370-7. PubMed ID: 7074020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosynthesis of monoterpenes: demonstration of a geranyl pyrophosphate:(-)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare).
    Croteau R; Shaskus J
    Arch Biochem Biophys; 1985 Feb; 236(2):535-43. PubMed ID: 3970524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of monoterpenes: specificity of the dehydrogenases responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone.
    Dehal SS; Croteau R
    Arch Biochem Biophys; 1987 Oct; 258(1):287-91. PubMed ID: 3310901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lack of regio- and stereospecificity in oxidation of (+) camphor by Streptomyces griseus enriched in cytochrome P-450soy.
    Sariaslani FS; McGee LR; Trower MK; Kitson FG
    Biochem Biophys Res Commun; 1990 Jul; 170(2):456-61. PubMed ID: 2116789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of yield components and essential oil production in a commercial hybrid sage (Salvia officinalis x Salvia fruticosa cv. Newe Ya'ar no. 4).
    Dudai N; Lewinsohn E; Larkov O; Katzir I; Ravid U; Chaimovitsh D; Sa'adi D; Putievsky E
    J Agric Food Chem; 1999 Oct; 47(10):4341-5. PubMed ID: 10552813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis).
    Croteau R; Karp F
    Arch Biochem Biophys; 1979 Dec; 198(2):523-32. PubMed ID: 42357
    [No Abstract]   [Full Text] [Related]  

  • 18. Monoterpene synthases of three closely related sage species (Salvia officinalis, S. fruticosa and S. pomifera, Lamiaceae).
    Schmiderer C; Steinborn R; Novak J
    Plant Physiol Biochem; 2023 Mar; 196():318-327. PubMed ID: 36738511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and genetic relationships among sage ( Salvia officinalis L.) cultivars and Judean sage ( Salvia judaica Boiss.).
    Böszörményi A; Héthelyi E; Farkas A; Horváth G; Papp N; Lemberkovics E; Szoke E
    J Agric Food Chem; 2009 Jun; 57(11):4663-7. PubMed ID: 19449812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral intermediate in the reaction of ferrous cytochrome P450cam with superoxide anion.
    Kobayashi K; Iwamoto T; Honda K
    Biochem Biophys Res Commun; 1994 Jun; 201(3):1348-55. PubMed ID: 8024579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.