These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 15503962)

  • 1. Respiratory acoustic thoracic imaging (RATHI): assessing deterministic interpolation techniques.
    Charleston-Villalobos S; Cortés-Rubiano S; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Med Biol Eng Comput; 2004 Sep; 42(5):618-26. PubMed ID: 15503962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory acoustic thoracic imaging (RATHI): assessing intrasubject variability.
    Torres-Jimenez A; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4793-6. PubMed ID: 19163788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessing the variability in respiratory acoustic thoracic imaging (RATHI).
    Charleston-Villalobos S; Torres-Jiménez A; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Comput Biol Med; 2014 Feb; 45():58-66. PubMed ID: 24480164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetry in lung sound intensities detected by respiratory acoustic thoracic imaging (RATHI) and clinical pulmonary auscultation.
    Torres-Jimenez A; Charleston-Villalobos S; Gonzalez-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4797-800. PubMed ID: 19163789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the thoracic distribution of normal breath sounds.
    González-Camarena R; Charleston-Villalobos S; Angeles-Olguín A; Aljama-Corrales T
    Methods Inf Med; 2010; 49(5):443-7. PubMed ID: 20526523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic thoracic images for transmitted glottal sounds.
    Charleston-Villalobos S; González-Camarena R; Chi-Lem G; Aljama-Corrales T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():3481-4. PubMed ID: 18002746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic thoracic image of crackle sounds using linear and nonlinear processing techniques.
    Charleston-Villalobos S; Dorantes-Méndez G; González-Camarena R; Chi-Lem G; Carrillo JG; Aljama-Corrales T
    Med Biol Eng Comput; 2011 Jan; 49(1):15-24. PubMed ID: 20652429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach to acoustical evaluation of human respiratory sounds.
    Korenbaum VI; Kulakov YV; Tagiltsev AA
    Biomed Instrum Technol; 1998; 32(2):147-54. PubMed ID: 9559111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity and reliability of acoustic analysis of respiratory sounds in infants.
    Elphick HE; Lancaster GA; Solis A; Majumdar A; Gupta R; Smyth RL
    Arch Dis Child; 2004 Nov; 89(11):1059-63. PubMed ID: 15499065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selection of interpolation methods used to mitigate spectral misregistration of imaging spectrometers].
    Chen X; Xiang Y; Feng YT
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Apr; 31(4):1147-50. PubMed ID: 21714280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustic analysis of swallowing sounds: a new technique for assessing dysphagia.
    Santamato A; Panza F; Solfrizzi V; Russo A; Frisardi V; Megna M; Ranieri M; Fiore P
    J Rehabil Med; 2009 Jul; 41(8):639-45. PubMed ID: 19565158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of respiratory sounds at the external ear.
    Pressler GA; Mansfield JP; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2089-96. PubMed ID: 15605855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An analysis of sounds for lungs with excessive water.
    Kah Jun Hong ; Wee Ser ; Foo DC
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3662-3665. PubMed ID: 28269088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system.
    Corbishley P; Rodríguez-Villegas E
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):196-204. PubMed ID: 18232362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a DSP-based instrument for real-time classification of pulmonary sounds.
    Alsmadi S; Kahya YP
    Comput Biol Med; 2008 Jan; 38(1):53-61. PubMed ID: 17716642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, construction, and evaluation of a bioacoustic transducer testing (BATT) system for respiratory sounds.
    Kraman SS; Pressler GA; Pasterkamp H; Wodicka GR
    IEEE Trans Biomed Eng; 2006 Aug; 53(8):1711-5. PubMed ID: 16916109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustical signal properties for cardiac/respiratory activity and apneas.
    Kaniusas E; Pfützner H; Saletu B
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1812-22. PubMed ID: 16285384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computerised respiratory sounds can differentiate smokers and non-smokers.
    Oliveira A; Sen I; Kahya YP; Afreixo V; Marques A
    J Clin Monit Comput; 2017 Jun; 31(3):571-580. PubMed ID: 27164980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of respiratory acoustic signals. Effect of microphone air cavity depth.
    Wodicka GR; Kraman SS; Zenk GM; Pasterkamp H
    Chest; 1994 Oct; 106(4):1140-4. PubMed ID: 7924486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of respiratory acoustical signals. Comparison of sensors.
    Pasterkamp H; Kraman SS; DeFrain PD; Wodicka GR
    Chest; 1993 Nov; 104(5):1518-25. PubMed ID: 8222817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.